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5| INTEGRATION

Figure 5.1 Iceboating is a popular winter sport in parts of the northern United States and Europe. (credit: modification of work
by Carter Brown, Flickr)
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Introduction

Iceboats are a common sight on the lakes of Wisconsin and Minnesota on winter weekends. Iceboats are similar to sailboats,
but they are fitted with runners, or “skates,” and are designed to run over the ice, rather than on water. Iceboats can move
very quickly, and many ice boating enthusiasts are drawn to the sport because of the speed. Top iceboat racers can attain
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speeds up to five times the wind speed. If we know how fast an iceboat is moving, we can use integration to determine how
far it travels. We revisit this question later in the chapter (see Example 5.27).

Determining distance from velocity is just one of many applications of integration. In fact, integrals are used in a wide
variety of mechanical and physical applications. In this chapter, we first introduce the theory behind integration and use
integrals to calculate areas. From there, we develop the Fundamental Theorem of Calculus, which relates differentiation and
integration. We then study some basic integration techniques and briefly examine some applications.

5.1 | Approximating Areas

Learning Objectives

5.1.1 Use sigma (summation) notation to calculate sums and powers of integers.
5.1.2 Use the sum of rectangular areas to approximate the area under a curve.
5.1.3 Use Riemann sums to approximate area.

Archimedes was fascinated with calculating the areas of various shapes—in other words, the amount of space enclosed by
the shape. He used a process that has come to be known as the method of exhaustion, which used smaller and smaller shapes,
the areas of which could be calculated exactly, to fill an irregular region and thereby obtain closer and closer approximations
to the total area. In this process, an area bounded by curves is filled with rectangles, triangles, and shapes with exact area
formulas. These areas are then summed to approximate the area of the curved region.

In this section, we develop techniques to approximate the area between a curve, defined by a function f(x), and the x-axis
on a closed interval [a, b]. Like Archimedes, we first approximate the area under the curve using shapes of known area

(namely, rectangles). By using smaller and smaller rectangles, we get closer and closer approximations to the area. Taking
a limit allows us to calculate the exact area under the curve.

Let’s start by introducing some notation to make the calculations easier. We then consider the case when f(x) is continuous

and nonnegative. Later in the chapter, we relax some of these restrictions and develop techniques that apply in more general
cases.

Sigma (Summation) Notation

As mentioned, we will use shapes of known area to approximate the area of an irregular region bounded by curves. This
process often requires adding up long strings of numbers. To make it easier to write down these lengthy sums, we look at
some new notation here, called sigma notation (also known as summation notation). The Greek capital letter X, sigma,

is used to express long sums of values in a compact form. For example, if we want to add all the integers from 1 to 20
without sigma notation, we have to write

1424+34+4+54+6+7+8+9+10+11+12+13+14+15+16+ 17+ 18+ 19+ 20.
We could probably skip writing a couple of terms and write
14243444419+ 20,

which is better, but still cumbersome. With sigma notation, we write this sum as
20
2
i=1
which is much more compact.

Typically, sigma notation is presented in the form

M=

aj;

i=1

where a; describes the terms to be added, and the i is called the index. Each term is evaluated, then we sum all the values,

7

beginning with the value when i =1 and ending with the value when i = n. For example, an expression like z s; is
i=2
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interpreted as s, + 53 + 54 + 55 + 5S¢ + 57. Note that the index is used only to keep track of the terms to be added; it does

not factor into the calculation of the sum itself. The index is therefore called a dummy variable. We can use any letter we
like for the index. Typically, mathematicians use i, j, k, m, and n for indices.

Let’s try a couple of examples of using sigma notation.
Example 5.1
Using Sigma Notation

a. Write in sigma notation and evaluate the sum of terms 3l for i = 1,2, 3,4,5.

b. Write the sum in sigma notation:

1,1,1 .1
1+4+9+16+25.
Solution
a. Write
5 .
D3t =3432433 434437
i=1
= 363.
b. The denominator of each term is a perfect square. Using sigma notation, this sum can be written as

11

i

@ 5.1 Write in sigma notation and evaluate the sum of terms 2 for i = 3, 4, 5, 6.

The properties associated with the summation process are given in the following rule.

Rule: Properties of Sigma Notation

Let ay, a,,...,a, and by, b,,..., b, represent two sequences of terms and let c be a constant. The following

properties hold for all positive integers n and for integers m, with 1 < m < n.

1.
n (5.1)
Z C = nc
i=1
2.
2 Z 5.2
ani=cz a; ( )
i=1 i=1
3.
n n n (5.3)
Z (a;+b)= Z a;+ Z b;
i=1 i=1 i=1
4.
(5.4)
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M=

n
$a-
i=1

n (5.5)
ai+ Z ai
i=1 i=m+1

Proof

We prove properties 2. and 3. here, and leave proof of the other properties to the Exercises.

2. We have
n
Z cai =Ca1+ca2+ca3+---+can
i=1
=clay+a,+az+ - +ay
n
:Cz ai.
i=1
3. We have
n
Z (ai+b;) =la;+by)+(ay+by)+(az+b3)+ - +lan+by
i=1
=(ay+ay+as+-+ap+(b;+by+bz+-+by)
n n
= Z Cli"r‘ Z bl"
i=1 i=1
O

A few more formulas for frequently found functions simplify the summation process further. These are shown in the next
rule, for sums and powers of integers, and we use them in the next set of examples.

Rule: Sums and Powers of Integers

1. The sum of n integers is given by
n
i=1
2. The sum of consecutive integers squared is given by
Z": 2124024 g2 o B DAL D)
i=1 6
3. The sum of consecutive integers cubed is given by

L 2 2
Y P =13420 g 2 A D
i=1

Example 5.2

Evaluation Using Sigma Notation

Write using sigma notation and evaluate:

a. The sum of the terms (i — 3)2 for i=1, 2,...,200.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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b. The sum of the terms (i3 - i2) fori=1,2,3,4,5,6.

Solution

a. Multiplying out (i — 3)2, we can break the expression into three terms.

200 200
> -3 =) (2-6i+9)
i=1 i=1
200 200 200
=Y 2= 6i+ 29
i=1 i=1 i=1
200 200 200
=2 i%-6) i+ 9
i=1 i=1 i=1
_ 200200+ DA+ ) _ 6[200(2(2)0 + 1)] +9(200)
= 2,686,700 — 120,600 + 1800

= 2,567,900

b. Use sigma notation property iv. and the rules for the sum of squared terms and the sum of cubed terms.

[ [ 6
Y(E-A) =Y Aoy
i=1 i=1 i=1

_ 6206+ D% _ 66+ D26 +1)

4 6
_ 1764 _ 546

4 6
=350

@ 5.2 Find the sum of the values of 4 + 3i for i =1, 2,..., 100.

Example 5.3

Finding the Sum of the Function Values

Find the sum of the values of f(x) = x> over the integers 1, 2, 3,..., 10
Solution

Using the formula, we have

10
3 210200+ 1)?
i=0 4
_ 100(121)
4

= 3025.
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5.3 20
@ Evaluate the sum indicated by the notation Z 2k+1).
k=1

Approximating Area

Now that we have the necessary notation, we return to the problem at hand: approximating the area under a curve. Let f(x)
be a continuous, nonnegative function defined on the closed interval [a, b]. We want to approximate the area A bounded by

f(x) above, the x-axis below, the line x = a on the left, and the line x = b on the right (Figure 5.2).

y

f(x)

a b B

Figure 5.2 An area (shaded region) bounded by the curve
f(x) at top, the x-axis at bottom, the line x = a to the left, and

the line x = b at right.

How do we approximate the area under this curve? The approach is a geometric one. By dividing a region into many small
shapes that have known area formulas, we can sum these areas and obtain a reasonable estimate of the true area. We begin

by dividing the interval [a, b] into n subintervals of equal width, b 7 2 We do this by selecting equally spaced points

Xg» X1, Xo,..., Xy With xg=a, x, =b, and

Xp=X_1=

fori=1,2,3,...,n.

We denote the width of each subinterval with the notation Ax, so Ax = b ; 4 and
X;=Xxqo+iAx

for i =1, 2, 3,..., n. This notion of dividing an interval [a, b] into subintervals by selecting points from within the interval

is used quite often in approximating the area under a curve, so let’s define some relevant terminology.

Definition

A set of points P = {x;} for i=0, 1, 2,...,n with a =x5 < x| <xp < -+ <x, =b, which divides the interval
[a, b] into subintervals of the form [x(, x1], [x{, x5],..., [x,, _, X,] is called a partition of [a, b] If the

subintervals all have the same width, the set of points forms a regular partition of the interval [a, b].

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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We can use this regular partition as the basis of a method for estimating the area under the curve. We next examine two
methods: the left-endpoint approximation and the right-endpoint approximation.

Rule: Left-Endpoint Approximation

On each subinterval [x;_, x;] (for i=1, 2, 3,...,n), construct a rectangle with width Ax and height equal to
f(x;_1), which is the function value at the left endpoint of the subinterval. Then the area of this rectangle is
f(x; _ )Ax. Adding the areas of all these rectangles, we get an approximate value for A (Figure 5.3). We use the

notation L, to denote that this is a left-endpoint approximation of A using n subintervals.

Ax L, = fx)Ax+ fx)AX+ - + f(x,_ DAx (5.6)
= zn:l flx;_DAx
T
B
] //
a=x Xg_1 b=x, x

Figure 5.3 In the left-endpoint approximation of area under a
curve, the height of each rectangle is determined by the function
value at the left of each subinterval.

The second method for approximating area under a curve is the right-endpoint approximation. It is almost the same as the
left-endpoint approximation, but now the heights of the rectangles are determined by the function values at the right of each
subinterval.

Rule: Right-Endpoint Approximation

Construct a rectangle on each subinterval [x; _{, x;], only this time the height of the rectangle is determined by the
function value f(x;) at the right endpoint of the subinterval. Then, the area of each rectangle is f(x;)Ax and the
approximation for A is given by

AXR,

SO PDAX + f(x0)Ax + -+ + f(xp)Ax (5.7)

Y fxpAx.

i=1

The notation R,, indicates this is a right-endpoint approximation for A (Figure 5.4).
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y
\
Right
endpoints
a=xp x,,', 1 b= Xp X

Figure 5.4 1In the right-endpoint approximation of area under
a curve, the height of each rectangle is determined by the
function value at the right of each subinterval. Note that the
right-endpoint approximation differs from the left-endpoint
approximation in Figure 5.3.

2
The graphs in Figure 5.5 represent the curve f(x) = % In graph (a) we divide the region represented by the interval

[0, 3] into six subintervals, each of width 0.5. Thus, Ax = 0.5. We then form six rectangles by drawing vertical lines
perpendicular to x;_ 4, the left endpoint of each subinterval. We determine the height of each rectangle by calculating
fx;_p for i=1,2,3,4,5,6. The intervals are [0, 0.5], [0.5, 1], [1, 1.5], [1.5, 2], [2, 2.5], [2.5, 3]. We find the area
of each rectangle by multiplying the height by the width. Then, the sum of the rectangular areas approximates the area
between f(x) and the x-axis. When the left endpoints are used to calculate height, we have a left-endpoint approximation.
Thus,

6
ArLg = Z fCiZ DAx = f(xg)Ax + f(x DAX + f(xx)Ax + f(x3)Ax + f(x4)Ax + f(x5)Ax

i=1
= £(0)0.5 + £(0.5)0.5 + £(1)0.5 + £(1.5)0.5 + £(2)0.5 + £(2.5)0.5
= (0)0.5 + (0.125)0.5 + (0.5)0.5 + (1.125)0.5 + (2)0.5 + (3.125)0.5
=0+ 0.0625 4+ 0.25 + 0.5625 + 1 + 1.5625

= 3.4375.
yi y = f(x) yi y = f(x)
4+ 4 +
21 24
x 1 2 3 X
Xo X1 Xo X3 Xg4 Xs5 Xg Xo X1 Xp X3 Xg X5 Xg
@) (b)

Figure 5.5 Methods of approximating the area under a curve by using (a) the left endpoints
and (b) the right endpoints.

In Figure 5.5(b), we draw vertical lines perpendicular to x; such that x; is the right endpoint of each subinterval, and
calculate f(x;) for i=1, 2, 3, 4,5, 6. We multiply each f(x;) by Ax to find the rectangular areas, and then add them.

This is a right-endpoint approximation of the area under f(x). Thus,

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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6
ARRs = Z FOx)Ax = f(xDAx + f(x)Ax + f(x3)Ax + f(x )Ax + f(x5)Ax + f(xg)Ax
i=1
= f(0.5)0.5 + f(1)0.5 + f(1.5)0.5 + f(2)0.5 + f(2.5)0.5 + f(3)0.5
= (0.125)0.5 + (0.5)0.5 + (1.125)0.5 4+ (2)0.5 + (3.125)0.5 + (4.5)0.5
=0.0625 4+ 0.25 + 0.5625 + 1 + 1.5625 +2.25
= 5.6875.

Example 5.4

Approximating the Area Under a Curve

Use both left-endpoint and right-endpoint approximations to approximate the area under the curve of f(x) = x?

on the interval [0, 2]; use n = 4.

Solution

First, divide the interval [0, 2] into n equal subintervals. Using n = 4, Ax = @ Z ) = 0.5. This is the width of

each rectangle. The intervals [0, 0.5], [0.5, 1], [1, 1.5], [1.5, 2] are shown in Figure 5.6. Using a left-endpoint
approximation, the heights are f(0) = 0, f(0.5) = 0.25, f(1) =1, f(1.5) = 2.25. Then,

Ly = fxp)Ax + fx)Ax + f(xp)Ax + f(x3)Ax
=0(0.5) +0.25(0.5) + 1(0.5) +2.25(0.5)
=1.75.

y
f(x) = x2

= I
— —

0.5 1 15 2
Figure 5.6 The graph shows the left-endpoint approximation

of the area under f(x) = x% from 0 to 2.

X

The right-endpoint approximation is shown in Figure 5.7. The intervals are the same, Ax = 0.5, but now use
the right endpoint to calculate the height of the rectangles. We have
Ry = flxpPAx+ fxp)Ax + flx3)Ax + f(xg)Ax
= 0.25(0.5) + 1(0.5) + 2.25(0.5) + 4(0.5)
=3.75.
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y
44
f(x)| = X2
24
AX AX AX
'¥ AV 35 A'a s . -
0.5 1 15 2 ol

Figure 5.7 The graph shows the right-endpoint approximation
of the area under f(x) = x2 from 0 to 2.

The left-endpoint approximation is 1.75; the right-endpoint approximation is 3.75.

@ 54 Sketch left-endpoint and right-endpoint approximations for f(x):% on [1,2]; use n=4.

Approximate the area using both methods.

Looking at Figure 5.5 and the graphs in Example 5.4, we can see that when we use a small number of intervals, neither
the left-endpoint approximation nor the right-endpoint approximation is a particularly accurate estimate of the area under
the curve. However, it seems logical that if we increase the number of points in our partition, our estimate of A will improve.
We will have more rectangles, but each rectangle will be thinner, so we will be able to fit the rectangles to the curve more
precisely.

We can demonstrate the improved approximation obtained through smaller intervals with an example. Let’s explore the idea
of increasing n, first in a left-endpoint approximation with four rectangles, then eight rectangles, and finally 32 rectangles.
Then, let’s do the same thing in a right-endpoint approximation, using the same sets of intervals, of the same curved region.

Figure 5.8 shows the area of the region under the curve f(x) = (x — 1)3 + 4 on the interval [0, 2] using a left-endpoint

approximation where n = 4. The width of each rectangle is

Ax=2=0

2-0_1
4 2°
The area is approximated by the summed areas of the rectangles, or
Ly = f(0)(0.5) + f(0.5)(0.5) + f(1)(0.5) + f(1.5)0.5
=7.5.
yq_
y = f(x)

a=/x0 X1 Xp Xz b=x%

Figure 5.8 With a left-endpoint approximation and dividing
the region from a to b into four equal intervals, the area under
the curve is approximately equal to the sum of the areas of the
rectangles.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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Figure 5.9 shows the same curve divided into eight subintervals. Comparing the graph with four rectangles in Figure 5.8
with this graph with eight rectangles, we can see there appears to be less white space under the curve when n = 8. This

white space is area under the curve we are unable to include using our approximation. The area of the rectangles is
Lg = £(0)(0.25) + £(0.25)(0.25) + £(0.5)(0.25) + £(0.75)(0.25)
+£(1)(0.25) + £(1.25)(0.25) + f(1.5)(0.25) + f(1.75)(0.25)

=17.75.
3? >4

a/=x0 X1 X2 X3 X4 Xs Xg X7 b=xgX

y

Figure 5.9 The region under the curve is divided into n = 8

rectangular areas of equal width for a left-endpoint
approximation.

The graph in Figure 5.10 shows the same function with 32 rectangles inscribed under the curve. There appears to be little
white space left. The area occupied by the rectangles is
L3, = £(0)(0.0625) + £(0.0625)(0.0625) + f(0.125)(0.0625) + -+ + £(1.9375)(0.0625)

= 7.9375.

y
y=1(x)/

7-_— Xo X
X31 b =Xz

Figure 5.10 Here, 32 rectangles are inscribed under the curve
for a left-endpoint approximation.

We can carry out a similar process for the right-endpoint approximation method. A right-endpoint approximation of the
same curve, using four rectangles (Figure 5.11), yields an area

R, = f(0.5)(0.5) + f(1)(0.5) + f(1.5)(0.5) + f(2)(0.5)
=38.5.
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y-
y = f(x)
a:/xo Xy Xp Xz Xg X

Figure 5.11 Now we divide the area under the curve into four
equal subintervals for a right-endpoint approximation.

Dividing the region over the interval [0, 2] into eight rectangles results in Ax = 2%—0 = 0.25. The graph is shown in

Figure 5.12. The area is
Rg = f(0.25)(0.25) + f(0.5)(0.25) + £(0.75)(0.25) + f(1)(0.25)
+£(1.25)(0.25) + £(1.5)(0.25) + f(1.75)(0.25) + £(2)(0.25)
= 8.25.

y =
y = 1)

/

<'y=x0 X1 Xo X3 X4 Xs Xg X7 b=xgX

Figure 5.12 Here we use right-endpoint approximation for a
region divided into eight equal subintervals.

Last, the right-endpoint approximation with n = 32 is close to the actual area (Figure 5.13). The area is approximately

R3, = f(0.0625)(0.0625) + f(0.125)(0.0625) + f(0.1875)(0.0625) + --- + £(2)(0.0625)
= 8.0625.
y y = 1)

/
77

7: Xo X
X313 b =X3

Figure 5.13 The region is divided into 32 equal subintervals
for a right-endpoint approximation.

Based on these figures and calculations, it appears we are on the right track; the rectangles appear to approximate the area
under the curve better as n gets larger. Furthermore, as n increases, both the left-endpoint and right-endpoint approximations
appear to approach an area of 8 square units. Table 5.1 shows a numerical comparison of the left- and right-endpoint

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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methods. The idea that the approximations of the area under the curve get better and better as n gets larger and larger is very
important, and we now explore this idea in more detail.

Values of n Approximate Area L, Approximate Area R,
n=4 7.5 8.5

n=3_§ 7.75 8.25

n=32 7.94 8.06

Table 5.1 Converging Values of Left- and Right-Endpoint Approximations
as n Increases

Forming Riemann Sums

So far we have been using rectangles to approximate the area under a curve. The heights of these rectangles have been
determined by evaluating the function at either the right or left endpoints of the subinterval [x;_{, x;]. Inreality, there is
no reason to restrict evaluation of the function to one of these two points only. We could evaluate the function at any point
x; in the subinterval [x;_,, x;I, and use f(x;-“ ) as the height of our rectangle. This gives us an estimate for the area of
the form

n

Ar Z f(x;" )Ax.

i=1

A sum of this form is called a Riemann sum, named for the 19th-century mathematician Bernhard Riemann, who developed
the idea.

Definition

Let f(x) be defined on a closed interval [a, b| and let P be a regular partition of [a, b]. Let Ax be the width of each

subinterval [x; _4, x;] and for each i, let x} be any pointin [x;_;, x;]. A Riemann sum is defined for f(x) as

n

2 Sl )ax.

i=1

Recall that with the left- and right-endpoint approximations, the estimates seem to get better and better as n get larger and
larger. The same thing happens with Riemann sums. Riemann sums give better approximations for larger values of n. We
are now ready to define the area under a curve in terms of Riemann sums.

Definition

n
Let f(x) be a continuous, nonnegative function on an interval [a, b], and let z f(x;l‘ )Ax be a Riemann sum for
i=1

f(x). Then, the area under the curve y = f(x) on [a, b] is given by

n
A= nli_)mooigl fle* )Ax.
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See a graphical demonstration (http://lwww.openstax.org/l/20_riemannsums) of the construction of a
Riemann sum.

Some subtleties here are worth discussing. First, note that taking the limit of a sum is a little different from taking the limit
of a function f(x) as x goes to infinity. Limits of sums are discussed in detail in the chapter on Sequences and Series

(http:/lcnx.org/content/m53756/latest/) ; however, for now we can assume that the computational techniques we used
to compute limits of functions can also be used to calculate limits of sums.

Second, we must consider what to do if the expression converges to different limits for different choices of {xj‘ }

Fortunately, this does not happen. Although the proof is beyond the scope of this text, it can be shown that if f(x) is

n
continuous on the closed interval [a, b], then nlem Z f(x;-“ )Ax exists and is unique (in other words, it does not depend

1=

on the choice of {x;" }).

We look at some examples shortly. But, before we do, let’s take a moment and talk about some specific choices for {xj‘ }

Although any choice for {x;k } gives us an estimate of the area under the curve, we don’t necessarily know whether that

estimate is too high (overestimate) or too low (underestimate). If it is important to know whether our estimate is high or

low, we can select our value for {x;k } to guarantee one result or the other.

If we want an overestimate, for example, we can choose {x’l" } such that for i =1, 2, 3,...,n, f(xj‘ )2 f(x) for all

X € [x; _y, x;]. In other words, we choose {x;" } sothat for i =1, 2, 3,..., n, f(x;" ) is the maximum function value on

n

the interval [x;_, x;]. If we select {x;“ } in this way, then the Riemann sum Z f(x;-k )Ax is called an upper sum.
i=1

Similarly, if we want an underestimate, we can choose {x;“ } sothatfor i=1, 2, 3,...,n, f(x;f< ) is the minimum function
value on the interval [x; _{, x;]. In this case, the associated Riemann sum is called a lower sum. Note that if f(x) is either

increasing or decreasing throughout the interval [a, b], then the maximum and minimum values of the function occur at the

endpoints of the subintervals, so the upper and lower sums are just the same as the left- and right-endpoint approximations.

Example 5.5

Finding Lower and Upper Sums
Find a lower sum for f(x) =10 — x2 on [1, 2]; let n = 4 subintervals.

Solution

With n=4 over the interval [1, 2], Ax = % We can list the intervals as
[1, 1.25], [1.25, 1.5}, [1.5, 1.75], [1.75, 2]. Because the function is decreasing over the interval [1, 2], Figure

5.14 shows that a lower sum is obtained by using the right endpoints.
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y
—}Q—W X2
5 4
1 2 X
a=Xg X1 Xo X3 Xy

Figure 5.14 The graph of f(x) =10 — x% is set up for a

right-endpoint approximation of the area bounded by the curve
and the x-axis on [1, 2], and it shows a lower sum.

The Riemann sum is

4
Y (10-x%)0.25) =0.25[10 - (1.25)% + 10 = (1.5)2 + 10 - (1.75)% + 10 - (2)?]
k=1
= 0.25[8.4375 + 7.75 + 6.9375 + 6]
=7.28.

The area of 7.28 is a lower sum and an underestimate.

@ 55 4 Findan upper sum for f(x) = 10 — x2 on [1, 2]; let n = 4.

b. Sketch the approximation.

Example 5.6

Finding Lower and Upper Sums for f(x) = sinx

Find a lower sum for f(x) = sinx over the interval [a, b] = [0, %], let n = 6.

Solution
Let’s first look at the graph in Figure 5.15 to get a better idea of the area of interest.
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1+t y =sinx

X

;11115_"1 ’\
2 6 4 3 12 2

a2 _ &

6 12

Figure 5.15 The graph of y = sinx is divided into six regions: Ax =

; ||z z| |z z| |z z| [z 5z Sz & = gi ;
The intervals are [0, 12], [12, 6]’ [6’ 4], [4, 3], [3, 12], and [12, 2]. Note that f(x) =sinx is
increasing on the interval [0, %], so a left-endpoint approximation gives us the lower sum. A left-endpoint

l) We have

5
approximation is the Riemann sum Z sin)cl-(12
i=0
Sz

o o)l (D) K ) o)

z ], find an upper sum; let n = 6.

|

@ 5.6 Using the function f(x) = sinx over the interval [0,
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5.1 EXERCISES

1. State whether the given sums are equal or unequal.

a Ziand Zk
i=1 k=1
10 1
b. Y iand ). (i-5)
i= i=6
10 9
¢ D ili—1)and Y, (j+1)j
i=1 =0

10

10
d Y i—1and ), (k&)
k=1

i=1

In the following exercises, use the rules for sums of powers
of integers to compute the sums.

1
2. i
i=5

—_
o

]
w

100 100

Suppose that Z a; =15 and Z b;=—12. In the
i=1 i=1

following exercises, compute the sums.

100

4, (ai+bi)
i=1
100

5 (ai_bt)
i=1
100

6. (3al~—4bl~)
i=1
100

7. ) (5a;+4b))

i=1

In the following exercises, use summation properties and
formulas to rewrite and evaluate the sums.

20
8. D, 100(k*—5k+1)
k=1

9, i): (72 -2j)

j=1

523

25

1. Y, [@0? - 1004]

k=1

Let L, denote the left-endpoint sum using n subintervals
and let R,, denote the corresponding right-endpoint sum.

In the following exercises, compute the indicated left and
right sums for the given functions on the indicated interval.

12. L, for f(x)=xll

on [2, 3]

13. R4 for g(x) = cos(nx) on [0, 1]

14. L6 for f(x) = m on [2, 5]

15. Rgfor f(x) =m on [2, 5]

16. Ryfor —L— on [-2, 2]
x“+1

17. L4 for 21 on [-2, 2]
x“+1

18. Ry for x2=2x+1 on [0, 2]

19. Lg for x2=2x+1 on [0, 2]

20. Compute the left and right Riemann sums—L,4 and Ry,
respectively—for f(x) = (2 — |xl) on [-2, 2]. Compute

their average value and compare it with the area under the
graph of f.

21. Compute the left and right Riemann sums—Lg and
Rg, respectively—for f(x) =3 —13—xl) on [0, 6].
Compute their average value and compare it with the area
under the graph of f.

22. Compute the left and right Riemann sums—L, and
Ry, respectively—for f(x) = V4 —x% on [-2, 2] and

compare their values.

23. Compute the left and right Riemann sums—Lg and
Rg, respectively—for f(x) =19 — (x — 3)2 on [0, 6] and

compare their values.

Express the following endpoint sums in sigma notation but
do not evaluate them.
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24. Ly for f(x) = xZ on [1, 2]

25. Lygfor f(x) ="V4—x? on [-2, 2]
26. Ry for f(x) =sinx on [0, 7]

27. Ry for Inx on [1, €]

In the following exercises, graph the function then use a
calculator or a computer program to evaluate the following
left and right endpoint sums. Is the area under the curve on
the given interval better approximated by the left Riemann
sum or right Riemann sum? If the two agree, say "neither."

28. [T]Lqgp and Rygp for y = x%=3x+1 on the interval
(-1, 1]

29. [T]Lygpand Rygg for y = x* on the interval [0, 1]

30. [T]Lsgand Ry for y = x2+ 11 on the interval [2, 4]
X

31. [T]L1go and Ry for y = x> on the interval [—1, 1]

|

32. [T] Lsg and Rsq for y = tan(x) on the interval [0,

&N

33. [T]Lygoand Rygo for y = ¢2* on the interval [—1, 1]

34. Let t; denote the time that it took Tejay van Garteren

to ride the jth stage of the Tour de France in 2014. If there
21

were a total of 21 stages, interpret Z tj.
j=1

35. Let r; denote the total rainfall in Portland on the jth

31
day of the year in 2009. Interpret Z r
j=1

J

36. Let d ; denote the hours of daylight and & ;j denote the

increase in the hours of daylight from day j— 1 to day j

in Fargo, North Dakota, on the jth day of the year. Interpret
365

di+ ). 55
j=2
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37. To help get in shape, Joe gets a new pair of running

shoes. If Joe runs 1 mi each day in week 1 and adds 1—10 mi
to his daily routine each week, what is the total mileage on
Joe’s shoes after 25 weeks?

38. The following table gives approximate values of the
average annual atmospheric rate of increase in carbon
dioxide (CO,) each decade since 1960, in parts per million
(ppm). Estimate the total increase in atmospheric CO,
between 1964 and 2013.

Decade

Ppm/y

1964-1973 1.07

1974-1983 1.34

1984-1993 1.40

1994-2003 1.87

2004-2013 2.07

Table 5.2 Average Annual
Atmospheric CO,

Increase,

1964-2013 Source:
http:/lwww.esrl.noaa.gov/
gmdiccggltrends/.
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39. The following table gives the approximate increase in 40. The following table gives the approximate increase in

sea level in inches over 20 years starting in the given year. dollars in the average price of a gallon of gas per decade
Estimate the net change in mean sea level from 1870 to since 1950. If the average price of a gallon of gas in 2010
2010. was $2.60, what was the average price of a gallon of gas in
Starting Year 20-Year Change 19502
Starting Year 10-Year Change
1870 0.3
1950 0.03
1890 1.5
1960 0.05
1910 0.2
1970 0.86
1930 2.8
1980 -0.03
1950 0.7
1990 0.29
1970 1.1
2000 1.12
1 1. .
990 > Table 5.4 Approximate 10-Year Gas
- Price Increases, 1950-2000 Source:
Table 5.3 ApprOXImate 20-Year Sea http:”epb_|b|_govlhomepagesl
Level Increases, 1870-1990 Source: Rick_Diamond/docs/
http:/llink.springer.com/article/ Ibni55011-trends.pdf.

10.1007%2Fs10712-011-9119-1
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41. The following table gives the percent growth of the
U.S. population beginning in July of the year indicated. If
the U.S. population was 281,421,906 in July 2000, estimate
the U.S. population in July 2010.

Year % Change/Year
2000 1.12
2001 0.99
2002 0.93
2003 0.86
2004 0.93
2005 0.93
2006 0.97
2007 0.96
2008 0.95
2009 0.88

Table 5.5 Annual Percentage
Growth of U.S. Population,
2000-2009 Source:
http:/lwww.census.gov/
popest/data.

(Hint: To obtain the population in July 2001, multiply the
population in July 2000 by 1.0112 to get 284,573,831.)

In the following exercises, estimate the areas under the
curves by computing the left Riemann sums, Lg.

42.

y
6 +

Chapter 5 | Integration

43.

y
6 +

44.

45.

O 1 2 3 4 5 6 7 8x

46. [T] Use a computer algebra system to compute the
Riemann sum, Ly, for N =10, 30,50 for

F@) =V1=x%on [-1, 1].
47. [T] Use a computer algebra system to compute the
Riemann sum, Ly, for N =10, 30, 50 for

f(x) = —1— on [~1, 1].
V1 + x2

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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48. [T] Use a computer algebra system to compute the
Riemann sum, Ly, for N = 10, 30, 50 for f(x) = sin? x

on [0, 2x]. Compare these estimates with 7.

In the following exercises, use a calculator or a computer
program to evaluate the endpoint sums Ry and Ly for
N =1,10,100. How do these estimates compare with the

exact answers, which you can find via geometry?

49. [T] y = cos(zx) on the interval [0, 1]
50. [T] y =3x+2 on the interval [3, 5]

In the following exercises, use a calculator or a computer
program to evaluate the endpoint sums Ry and Ly for
N =1,10,100.

51. [T] y= x*=5x2+4 on the interval [-2, 2],

f 32

which has an exact area o 15

52. [T] y =1Inx on the interval [1, 2],

exact area of 2In(2) — 1

which has an

53. Explain why, if f(a) >0 and f is increasing on
la, b], that the left endpoint estimate is a lower bound for

the area below the graph of fon [a, b].

54. Explain why, if f(b) >0 and f is decreasing on
la, b], that the left endpoint estimate is an upper bound for

the area below the graph of fon [a, b].

55. Show that, in general,
Ry—Ly=@b-ax D@,
56. Explain why, if f is increasing on [a, b], the error

between either Ly or Ry and the area A below the graph of

NGO

fis at most (b —

527

57. For each of the three graphs:
a. Obtain a lower bound L(A) for the area enclosed

by the curve by adding the areas of the squares
enclosed completely by the curve.
b. Obtain an upper bound U(A) for the area by

adding to L(A) the areas B(A) of the squares

enclosed partially by the curve.

Graph 3

58. In the previous exercise, explain why L(A) gets no
smaller while U(A) gets no larger as the squares are

subdivided into four boxes of equal area.
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59. A unit circle is made up of n wedges equivalent to the

inner wedge in the figure. The base of the inner triangle

is 1 unit and its height is sin(Z). The base of the outer

triangle is B = cos(&) + sin(Z)tan(Z) and the height is
H=B sin(zn—”). Use this information to argue that the area

of a unit circle is equal to 7.
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5.2 | The Definite Integral

Learning Objectives

5.2.1 State the definition of the definite integral.

5.2.2 Explain the terms integrand, limits of integration, and variable of integration.
5.2.3 Explain when a function is integrable.

5.2.4 Describe the relationship between the definite integral and net area.

5.2.5 Use geometry and the properties of definite integrals to evaluate them.
5.2.6 Calculate the average value of a function.

In the preceding section we defined the area under a curve in terms of Riemann sums:

n
A= "h*mwi; Fles )Ax,

However, this definition came with restrictions. We required f(x) to be continuous and nonnegative. Unfortunately, real-

world problems don’t always meet these restrictions. In this section, we look at how to apply the concept of the area under
the curve to a broader set of functions through the use of the definite integral.

Definition and Notation

The definite integral generalizes the concept of the area under a curve. We lift the requirements that f(x) be continuous

and nonnegative, and define the definite integral as follows.

Definition

If f(x) is a function defined on an interval [a, b], the definite integral of f from a to b is given by

b £ o
[ fGodx = tim D7 flt )Ax, s
@ i=1

provided the limit exists. If this limit exists, the function f(x) is said to be integrable on [a, b], or is an integrable

function.

The integral symbol in the previous definition should look familiar. We have seen similar notation in the chapter on
Applications of Derivatives, where we used the indefinite integral symbol (without the a and b above and below) to
represent an antiderivative. Although the notation for indefinite integrals may look similar to the notation for a definite
integral, they are not the same. A definite integral is a number. An indefinite integral is a family of functions. Later in this
chapter we examine how these concepts are related. However, close attention should always be paid to notation so we know
whether we’re working with a definite integral or an indefinite integral.

Integral notation goes back to the late seventeenth century and is one of the contributions of Gottfried Wilhelm Leibniz, who
is often considered to be the codiscoverer of calculus, along with Isaac Newton. The integration symbol [ is an elongated S,
suggesting sigma or summation. On a definite integral, above and below the summation symbol are the boundaries of the
interval, [a, b]. The numbers a and b are x-values and are called the limits of integration; specifically, a is the lower limit

and b is the upper limit. To clarify, we are using the word limit in two different ways in the context of the definite integral.
First, we talk about the limit of a sum as n — 0. Second, the boundaries of the region are called the limits of integration.

We call the function f(x) the integrand, and the dx indicates that f(x) is a function with respect to x, called the variable

of integration. Note that, like the index in a sum, the variable of integration is a dummy variable, and has no impact on the
computation of the integral. We could use any variable we like as the variable of integration:

/a bf(x)dx: fa bf(t)dz: fa bf(u)du
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n
Previously, we discussed the fact that if f(x) is continuous on [a, b], then the limit nli)moo Z f(x?< )Ax exists and is
i=1

unique. This leads to the following theorem, which we state without proof.

Theorem 5.1: Continuous Functions Are Integrable

If f(x) is continuous on [a, b], then fis integrable on [a, b].

Functions that are not continuous on [a, b] may still be integrable, depending on the nature of the discontinuities. For
example, functions with a finite number of jump discontinuities on a closed interval are integrable.

It is also worth noting here that we have retained the use of a regular partition in the Riemann sums. This restriction is not
strictly necessary. Any partition can be used to form a Riemann sum. However, if a nonregular partition is used to define
the definite integral, it is not sufficient to take the limit as the number of subintervals goes to infinity. Instead, we must take
the limit as the width of the largest subinterval goes to zero. This introduces a little more complex notation in our limits and
makes the calculations more difficult without really gaining much additional insight, so we stick with regular partitions for
the Riemann sums.

Example 5.7

Evaluating an Integral Using the Definition

2
Use the definition of the definite integral to evaluate f x%dx. Usea right-endpoint approximation to generate
0

the Riemann sum.

Solution

We first want to set up a Riemann sum. Based on the limits of integration, we have a =0 and b = 2. For
i=0,1,2,..,n let P={x;} bearegular partition of [0, 2]. Then

Ax:b—a=2

n n

Since we are using a right-endpoint approximation to generate Riemann sums, for each i, we need to calculate
the function value at the right endpoint of the interval [x; _{, x;]. The right endpoint of the interval is x;, and

since P is a regular partition,
xi=x0+iAx=0+i[%]=%.

Thus, the function value at the right endpoint of the interval is
i2

o =2 = (3) =45,

Then the Riemann sum takes the form
\ V(422 _ N 82_8 ¥ 2
IS U B e
1= 1= l

n

Using the summation formula for Z i 2, we have
i=1
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i FOrpAx =%i i?
n-i=1

i=1

- !
- &[M]
6

n3

_ 166> +24n° 4+ 8n
6n’

8,4, 8
=3tnton

_ &[M]

Now, to calculate the definite integral, we need to take the limit as n — co. We get

2 n
2 _ .
fo sdx = lim, =§1 fOe)Ax

T 8.4 8

_ 8 4 8
= lim (3)+n11moo(n)+ hm°°(6n )
_38 _8

=3+0+0=5

5.7 3
@ Use the definition of the definite integral to evaluate f (2x — 1)dx. Use aright-endpoint approximation
0

to generate the Riemann sum.

Evaluating Definite Integrals

Evaluating definite integrals this way can be quite tedious because of the complexity of the calculations. Later in this chapter
we develop techniques for evaluating definite integrals without taking limits of Riemann sums. However, for now, we can
rely on the fact that definite integrals represent the area under the curve, and we can evaluate definite integrals by using
geometric formulas to calculate that area. We do this to confirm that definite integrals do, indeed, represent areas, so we can
then discuss what to do in the case of a curve of a function dropping below the x-axis.

Example 5.8

Using Geometric Formulas to Calculate Definite Integrals

6
Use the formula for the area of a circle to evaluate / V9 —(x—-3) 2dx.
3

Solution

The function describes a semicircle with radius 3. To find
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/ —(x— dx,
2

we want to find the area under the curve over the interval [3, 6]. The formula for the area of a circle is A = zr~.

The area of a semicircle is just one-half the area of a circle, or A = (%):zrz. The shaded area in Figure 5.16

covers one-half of the semicircle, or A = (%)m"z. Thus,

6
f 3w/9 —(x=3)? = %;:(3)2

_9,

4
=~ 7.069.

fx) = 9 — (x — 3)2

3 6 X
Figure 5.16 The value of the integral of the function f(x)

over the interval [3, 6] is the area of the shaded region.

5.8 4
@ Use the formula for the area of a trapezoid to evaluate / 2x + 3)dx.
2

Area and the Definite Integral

When we defined the definite integral, we lifted the requirement that f(x) be nonnegative. But how do we interpret “the

area under the curve” when f(x) is negative?

Net Signed Area

Let us return to the Riemann sum. Consider, for example, the function f(x) =2 — 2x? (shown in Figure 5.17) on
the interval [0, 2]. Use n =8 and choose {x;" } as the left endpoint of each interval. Construct a rectangle on each
subinterval of height f(xj‘ ) and width Ax. When f(x;" ) is positive, the product f(xj‘ )Ax represents the area of the

rectangle, as before. When f(x’l-" ) is negative, however, the product f(x;F )Ax represents the negative of the area of the

rectangle. The Riemann sum then becomes

Z f Ax = (Area of rectangles above the x-axis) — (Area of rectangles below the x-axis)
i=1

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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yi

64

Figure 5.17 For a function that is partly negative, the
Riemann sum is the area of the rectangles above the x-axis less
the area of the rectangles below the x-axis.

Taking the limit as n — oo, the Riemann sum approaches the area between the curve above the x-axis and the x-axis, less

the area between the curve below the x-axis and the x-axis, as shown in Figure 5.18. Then,
2 n
fo fdx = lim_ Y flepAx
i=1
= A 1— A2

The quantity A| — A, is called the net signed area.

51

64

Figure 5.18 In the limit, the definite integral equals area A;
less area Ay, or the net signed area.

Notice that net signed area can be positive, negative, or zero. If the area above the x-axis is larger, the net signed area is
positive. If the area below the x-axis is larger, the net signed area is negative. If the areas above and below the x-axis are
equal, the net signed area is zero.

Example 5.9

Finding the Net Signed Area
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Find the net signed area between the curve of the function f(x) = 2x and the x-axis over the interval [-3, 3].

Solution

The function produces a straight line that forms two triangles: one from x = —3 to x =0 and the other from

x=0 to x =3 (Figure 5.19). Using the geometric formula for the area of a triangle, A = %bh, the area of

triangle A;, above the axis, is

_1 _
A= 23(6) =9,
where 3 is the base and 2(3) = 6 is the height. The area of triangle A,, below the axis, is
Ay =33)6) =9,
where 3 is the base and 6 is the height. Thus, the net area is

3
[ 2xdx=a,-4,=9-9=0.
-3

y
64
34
A1
6 - 3 6X
Az
64

Figure 5.19 The area above the curve and below the x-axis
equals the area below the curve and above the x-axis.

Analysis
If A; is the area above the x-axis and A, is the area below the x-axis, then the net areais A| — A,. Since the areas

of the two triangles are equal, the net area is zero.

@ 5.9 Find the net signed area of f(x) = x —2 over the interval [0, 6], illustrated in the following image.

Yy
fx)=x—2

2 )<2 4 6 X
/ Az
41

Total Area

One application of the definite integral is finding displacement when given a velocity function. If v(f) represents the

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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velocity of an object as a function of time, then the area under the curve tells us how far the object is from its original
position. This is a very important application of the definite integral, and we examine it in more detail later in the chapter.
For now, we’re just going to look at some basics to get a feel for how this works by studying constant velocities.

When velocity is a constant, the area under the curve is just velocity times time. This idea is already very familiar. If a car
travels away from its starting position in a straight line at a speed of 75 mph for 2 hours, then it is 150 mi away from its
original position (Figure 5.20). Using integral notation, we have

2
/ 75dt = 150.
0

v (mi/hr) y
80

70

60+

50+

401

30+

201

10+

0 02040608 1 12 14 16 18 2 22 t(hours)
Figure 5.20 The area under the curve v(f) = 75 tells us how far the car

is from its starting point at a given time.

In the context of displacement, net signed area allows us to take direction into account. If a car travels straight north at a
speed of 60 mph for 2 hours, it is 120 mi north of its starting position. If the car then turns around and travels south at a
speed of 40 mph for 3 hours, it will be back at it starting position (Figure 5.21). Again, using integral notation, we have

2 5
f 60dt+f —40dt =120 —120
0 2
=0.

In this case the displacement is zero.
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v (mi/hr)
701

60

50
401
30+
2014
104

0 - + - - - - - -
1 > 3 4 t (hours)

—10

—-204

—30 1

—404

—50 4

Figure 5.21 The area above the axis and the area below the axis
are equal, so the net signed area is zero.

Suppose we want to know how far the car travels overall, regardless of direction. In this case, we want to know the area
between the curve and the x-axis, regardless of whether that area is above or below the axis. This is called the total area.

Graphically, it is easiest to think of calculating total area by adding the areas above the axis and the areas below the axis
(rather than subtracting the areas below the axis, as we did with net signed area). To accomplish this mathematically, we use
the absolute value function. Thus, the total distance traveled by the car is

2 5 2 5
/0 60ldr + /2 |-40ldt = /0 60dt + /2 40d1

=120+ 120
= 240.

Bringing these ideas together formally, we state the following definitions.

Definition

Let f(x) be an integrable function defined on an interval [a, b]. Let A; represent the area between f(x) and the
x-axis that lies above the axis and let A, represent the area between f(x) and the x-axis that lies below the axis. Then,

the net signed area between f(x) and the x-axis is given by

b
/a fX)dx=A, - A,

The total area between f(x) and the x-axis is given by

b
/ 1fWldx = A, + Ay

Example 5.10
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Finding the Total Area

Find the total area between f(x) = x — 2 and the x-axis over the interval [0, 6].

Solution
Calculate the x-intercept as (2, 0) (set y =0, solve for x). To find the total area, take the area below the x-axis

over the subinterval [0, 2] and add it to the area above the x-axis on the subinterval [2, 6] (Figure 5.22).

y
fx)=x—2

-2 )<2 4 6 X
/ Az
41

Figure 5.22 The total area between the line and the x-axis
over [0, 6] is A, plus A;.

We have

6
[l =2)ldx =4, +4,,
0

Then, using the formula for the area of a triangle, we obtain
Lyl
Ay = 2bh =3 2-2=2

Ay=dbh=1-4-4=8

1.
2
The total area, then, is

@’ 5.10 Find the total area between the function f(x) = 2x and the x-axis over the interval [-3, 3].

Properties of the Definite Integral

The properties of indefinite integrals apply to definite integrals as well. Definite integrals also have properties that relate to
the limits of integration. These properties, along with the rules of integration that we examine later in this chapter, help us
manipulate expressions to evaluate definite integrals.

Rule: Properties of the Definite Integral
1.

/ =0 e
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If the limits of integration are the same, the integral is just a line and contains no area.

2.
a b (5.10)
[ fedx=- [ feodx
b a
If the limits are reversed, then place a negative sign in front of the integral.
3.
b b b (5.11)
[ @ +ewldx= [ f@dx+ [ gdx
a a a
The integral of a sum is the sum of the integrals.
4.
b b " (5.12)
J [ = g(0)ldx = J Fdx = [ gdx
a a ¢
The integral of a difference is the difference of the integrals.
B
b b (5.13)
[ er@dx=c [ fe)
a a
for constant c. The integral of the product of a constant and a function is equal to the constant multiplied by
the integral of the function.
6.

_/a bf (x)dx = fa Cf(x)dx+ /C ’ fx)dx (5.14)

Although this formula normally applies when c is between a and b, the formula holds for all values of a, b, and
¢, provided f(x) is integrable on the largest interval.

Example 5.11

Using the Properties of the Definite Integral

Use the properties of the definite integral to express the definite integral of f(x) = —3x3 4+ 2x+2 over the

interval [—2, 1] as the sum of three definite integrals.

Solution

1
Using integral notation, we have / (—3x3 +2x+ 2)dx. We apply properties 3. and 5. to get
-2
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f_lz(—3x3 +2x+ Z)dx = f_l2—3x3 dx + f_122xdx + f_l22dx

1 1 1
=3[ Bdx+2[ xdx+ [ 2dx.
-2 / -2 f )

5.11  Use the properties of the definite integral to express the definite integral of f(x) = 6x> —4x2 +2x -3

over the interval [1, 3] as the sum of four definite integrals.

Example 5.12

Using the Properties of the Definite Integral

8 5 8
If it is known that / f(x)dx =10 and f f(x)dx =5, find the value of f f(x)dx.
0 0 5

Solution
By property 6.,
b c b
/a F(o)dx = fa Fodx + /c F(x)dx.
Thus,
ey ey ey
fof(x) X = /Of(x) x+f5f(X) x
8
10 =5 d
+ f5 F()dx

8
5 = /5 F(x)dx.

5.12 s 5 2
@ If itis known that [ f(x)dx=-3 and [ f(x)dx=4, find the value of [ f(x)dx.
1 2 1

Comparison Properties of Integrals

A picture can sometimes tell us more about a function than the results of computations. Comparing functions by their graphs
as well as by their algebraic expressions can often give new insight into the process of integration. Intuitively, we might say
that if a function f(x) is above another function g(x), then the area between f(x) and the x-axis is greater than the area

between g(x) and the x-axis. This is true depending on the interval over which the comparison is made. The properties of
definite integrals are valid whether a < b, a = b, or a > b. The following properties, however, concern only the case

a < b, and are used when we want to compare the sizes of integrals.
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Theorem 5.2: Comparison Theorem

i. If f(x) >0 for a <x<b, then

b
f f(x)dx > 0.

i. If f(x) > g(x) for a <x<b, then

/ ’ fdx > / e

iii. If mand M are constants such that m < f(x) < M for a < x < b, then

b
mb—a) < / f()dx
<M - a).

Example 5.13

Comparing Two Functions over a Given Interval

Compare f(x) ="V1+ x% and g(x) = V1 + x over the interval [0, 1].

Solution

Graphing these functions is necessary to understand how they compare over the interval [0, 1]. Initially, when
graphed on a graphing calculator, f(x) appears to be above g(x) everywhere. However, on the interval [0, 1],
the graphs appear to be on top of each other. We need to zoom in to see that, on the interval [0, 1], g(x) is above

f(x). The two functions intersect at x =0 and x = 1 (Figure 5.23).

y

} { } } } > f(x) 1+ x2
-2 -1 0 1 2 x

(@) ()
Figure 5.23 (a) The function f(x) appears above the function g(x)

except over the interval [0, 1] (b) Viewing the same graph with a greater
zoom shows this more clearly.
We can see from the graph that over the interval [0, 1], g(x) > f(x). Comparing the integrals over the specified

1 1
interval [0, 1], we also see that f gx)dx > / f(x)dx (Figure 5.24). The thin, red-shaded area shows just
0 0

how much difference there is between these two integrals over the interval [0, 1].
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(a) (b)
Figure 5.24 (a) The graph shows that over the interval
[0, 1], g(x) > f(x), where equality holds only at the endpoints of the

interval. (b) Viewing the same graph with a greater zoom shows this more
clearly.

Average Value of a Function

We often need to find the average of a set of numbers, such as an average test grade. Suppose you received the following
test scores in your algebra class: 89, 90, 56, 78, 100, and 69. Your semester grade is your average of test scores and you
want to know what grade to expect. We can find the average by adding all the scores and dividing by the number of scores.
In this case, there are six test scores. Thus,

89+90+56+678+100+69=%z80,33.

Therefore, your average test grade is approximately 80.33, which translates to a B— at most schools.

Suppose, however, that we have a function v(¢) that gives us the speed of an object at any time t, and we want to find the
object’s average speed. The function v(¢) takes on an infinite number of values, so we can’t use the process just described.
Fortunately, we can use a definite integral to find the average value of a function such as this.

Let f(x) be continuous over the interval [a, b] and let [a, b] be divided into n subintervals of width Ax = (b — a)/n.

Choose a representative x¥ in each subinterval and calculate f(xj‘ ) for i =1, 2,..., n. In other words, consider each

f (xj‘ ) as a sampling of the function over each subinterval. The average value of the function may then be approximated as

JOp )+ S0 )+ -+ flh )

n >

which is basically the same expression used to calculate the average of discrete values.

b—a _b—a
S son =S

But we know Ax = , and we get

SOE )+ 0% )+ o+ Sl ) ] )+ S ) + e+ )
n (b—a) )
Ax

n
Following through with the algebra, the numerator is a sum that is represented as Z f(x;f< ), and we are dividing by a
i=1
fraction. To divide by a fraction, invert the denominator and multiply. Thus, an approximate value for the average value of
the function is given by
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i £l ) n
lz(}y;a) = (bA_xa)Z f(x;!‘ )

Ax i=1
= a).Zn:1 St )

This is a Riemann sum. Then, to get the exact average value, take the limit as n goes to infinity. Thus, the average value of
a function is given by

n b
L tim_ Y fGpax=1= [ fooax.
=1 a

b—qgn— .
i

Definition

Let f(x) be continuous over the interval |a, b]. Then, the average value of the function f(x) (or faye) On [a, b] is

given by

b
—_1
fave—m/;f(x)dx-

Example 5.14

Finding the Average Value of a Linear Function

Find the average value of f(x) = x+ 1 over the interval [0, 5].

Solution
First, graph the function on the stated interval, as shown in Figure 5.25.

y

© 1 2 3 4 5 6 7%
Figure 5.25 The graph shows the area under the function
f(x)=x+1 over [0, 5].

The region is a trapezoid lying on its side, so we can use the area formula for a trapezoid A = %h(a +b), where

h represents height, and a and b represent the two parallel sides. Then,

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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Thus the average value of the function is

5
_1 _1.35_17
5_0/0x+1dx—5

@ 5.13 Find the average value of f(x) = 6 — 2x over the interval [0, 3].

27

543
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5.2 EXERCISES

In the following exercises, express the limits as integrals.

n
60. lim Y. (x* )Ax over [I, 3]
n
6L lim Y (S0t )2 =3(xt )})Ax over [0, 2]

n
62. nli}moo‘z sin2(2ﬂx;1‘ )Ax over [0, 1]

i=1

n
63. nli)moolzl c052(27tx;" )Ax over [0, 1]
i=

In the following exercises, given L, or R, as indicated,
express their limits as n — oo as definite integrals,

identifying the correct intervals.

65. Rn=%_zn:%

66. Ln=%i(1+2%)
Lk .

67. Ry=2D, (3+3L)

68 L,=22 3 2ri=Leos(2ri=1)

0. Ry=4 3 (1 Hpoe((1+4) )

i=1

In the following exercises, evaluate the integrals of the
functions graphed using the formulas for areas of triangles
and circles, and subtracting the areas below the x-axis.

70.
y
51
4+ o
3 V=72 + 18x — X2
N — + — 2
2l v—12 + 8x — x
V2x — x2
14
0 2 4 6 8 10 12X

71.

72.

Chapter 5 | Integration

11— -1

12X

72 + 18x — x?

12X
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74.

y

51

44

31

T 2

1__-.2x—x~

0 'U'é'le'l'zx

=f

24 :
v—12 + 8x — X

34

44

75.

y

s

34

21

1-|x-1

14

of X T4 T 8 w0 1

-1+

24 5
—=12 + -

3l 8x — x

44

In the following exercises, evaluate the integral using area
formulas.

3
76. f (3 — x)dx
0
3
77. / (3 — X)dx
2
3
78. / (3 — Ix)dx
-3
6
79. f (3 — Ix — 31)dx
0
2
80. / V4 — x%dx
5
81. / V4 = (x — 3)2dx
1

12
82. / 36 — (x — 6)%dx
0

545

3
83. / (3 — Ix)dx
)

In the following exercises, use averages of values at the left
(L) and right (R) endpoints to compute the integrals of the
piecewise linear functions with graphs that pass through the
given list of points over the indicated intervals.

84. {(0,0), (2, 1), (4, 3), (5, 0), (6, 0), (8, 3)} over
[0, 8]

85.  {(0,2), (1, 0), (3, 5), (5,5), (6, 2), (8 0)} over
[0, 8]

86. {(—4, —4), (-2, 0), (0, =2), (3, 3), (4, 3)} over
[~4. 4]

87. {(-4, 0), (-2, 2), (0, 0), (1, 2), (3, 2), (4, 0)}
over [—4, 4]

4 2
Suppose that f f(x)dx =5 and f f(x)dx =-3, and
0 0

4 2
/ ¢(x)dx = —1 and / ¢(x)dx = 2. Tn the following
0 0

exercises, compute the integrals.

4
88. d.
/0 (f(x) + g(0))dx
! d.

89.
f2 (f(x) + g(x))dx

2
90. /0 (f(x) — g())dx

4
91. - d.
f2 (f(x) — g(x))dx
2
92. 3 -4 d
/0 (B(x) — 4g(x))dx

4
93. f2 (4£(x) — 3g(0)dx

In the following exercises, use the

A 0 A
/ f)dx = / fx)dx + / f(x)dx to compute the
—A —-A 0

identity

integrals.

/4
94, J %dz (Hint: sin(—f) = —sin(?))
t

-7



546

%3

_t
95. _yzl +cos tdt

In the following exercises, find the net signed area between
f(x) and the x-axis.

3
96. / (2 — x)dx (Hint: Look at the graph of f.)
1

4
97. / (x—= 3)3 dx (Hint: Look at the graph of f.)
2

In the following exercises,

/()lxdx = %, /lez dx = %, and /le3 dx = %,

compute the integrals.

given that

98. /01(1 +x+ 22+ x%)dx
99. fol(l —x+ 2 = x)dx
100. /01(1 —x)2%dx

101. fol(l —2x)%dx

102. J(l)(6x — 4%

103. f01(7 — 5x%)dx

In the following exercises,
theorem.

use the comparison
3
104. Show that / (x2 —6x+ 9)dx > 0.
0
3
105. Show that / (x = 3)(x + 2)dx < 0.
-2
1 1
106. Show that f V1 + x3dx < / V1 + x%dx.
0 0

2 2
107. Show that f V1 + xdx < / V1 + x%dx.
1 1

Chapter 5 | Integration

/2 )
108. Show that / sintdt > Z. (Hint: sint > 2L over
0

T
-5

/4
109. Show that f costdt > m\2/4.
—n/4

In the following exercises, find the average value f,ye of f
between a and b, and find a point ¢, where f(c) = fave-

110. f=x%a=-1,b=1
. f@=x,a=-1,b=1

12, f)=V-22a=0b=2
13, f(x)=@-l),a=-3,b=3
114. f(x) =sinx,a=0,b=2x
115. f(x)=cosx,a=0,b=2n

In the following exercises, approximate the average value
using Riemann sums Lgg and Ryg9. How does your answer
compare with the exact given answer?

116. [T] y =In(x) over the interval [1, 4]; the exact

In256) _
: :

solution is

117. [T] y= e? over the interval [0, 1]; the exact
solution is 2(ve — 1).

118. [T] y =tanx over the interval [O, E]; the exact

N

solution is %

119. [T] y=-Xt1
4—x

exact solution is .

over the interval [—1, 1]; the

"

(o)}

In the following exercises, compute the average value using
the left Riemann sums Ly for N =1, 10, 100. How does

the accuracy compare with the given exact value?

120. [T] y= x2 — 4 over the interval [0, 2]; the exact
8

solution is —2.

3
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2
121. [T] y = xe*

solution is %(64 - 1).

over the interval [0, 2]; the exact

X
122. [T] y= (%) over the interval [0, 4]; the exact

A 15

solution is A @

123. [T] y =xsin(x2) over the interval [—z, 0]; the
2) -1

o COS(JT
exact solution is
2

2z
124. Suppose that A= f sin? tdt and
0
2
B= [ cos’dr. Show that A+ B =27 and A = B.
0

/4 5
sec“tdt =n and
—nl4

125. Suppose that A=

/4
B= f tan?rdt. Show that A — B = Z.

—n/4 2
126. Show that the average value of sin%¢ over [0, 2x]
is equal to 1/2 Without further calculation, determine

2

whether the average value of sin“t over [0, z] is also

equal to 1/2.

24 over [0, 2x]

127. Show that the average value of cos
is equal to 1/2. Without further calculation, determine
whether the average value of COSz(l‘) over [0, z] is also

equal to 1/2.

128. Explain why the graphs of a quadratic function
(parabola) p(x) and a linear function #(x) can intersect

in at most two points. Suppose that p(a) = £(a) and

b b
p(b) = £(b), and that / p(dt > f £(dt. Explain
a a

d d
why /C p) > /C £(t)dt whenever a <c<d <b.

129. Suppose that parabola p(x) = ax>+bx+c opens

downward (a < 0) and has a vertex of y = 5—5 > (. For

B
which interval [A, B] is / (ax2 +bx+ c)dx as large as
A

possible?

547

130. Suppose [a, b] can be subdivided into subintervals
a=ap<a;<ap<--<ay=>b such that either
f>0 over [a;_,a;] or f <0 over [a;_1, a;]. Set

A,:f

ai—1

aj

f(tdt.
b

a. Explain why / fOdt=A;+A,+ -+ Ay.
a

b b
b. Then, explain why ‘ f fHdi| < / lf(0)dt.
a a

131. Suppose f and g are continuous functions such that
d d

f fdt < f g(t)ydt for every subinterval [c, d] of
c c

la, b]. Explain why f(x) < g(x) for all values of x.

132. Suppose the average value of f over [a, b] is 1 and
the average value of f over [b, c] is 1 where a < ¢ < b.

Show that the average value of fover [a, c] is also 1.

133. Suppose that [a, b] can be partitioned. taking
a=ag<ay<--<ay=>b such that the average value
of f over each subinterval [a; _, a;] =1 is equal to 1 for
each i = 1,..., N. Explain why the average value of f over

la, D] is also equal to 1.

134. Suppose that for each i such that 1 <i < N one has
N

fd = i. showthat [ f(id = NNV+T)
0 2

i—1

135. Suppose that for each i such that 1 <i <N one

h i dt = i%. Sh h

as fi_lf(t) t=1 ow that
N

/0 F(odt = N(N + 1%(2N+ l)‘

136. [T] Compute the left and right Riemann sums L

L R
and R;( and their average w for f(t) = 12 over

1 _
[0, 1]. Given that f zzdz=0.33, to how many
0

. . Lig+R
decimal places is % accurate?
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137. [T] Compute the left and right Riemann sums, Lq
L R
and Rj, and their average % for f(r) = (4 - t2)

2 —
over [1, 2]. Given that / (4 - tz)dt =1.66, to how
1

L R
many decimal places is % accurate?
5
138.  1f [ Vl+rfdr=417133.,  what s
1

5
/ V1 + udu?
1

1
139. Estimate / tdt using the left and right endpoint
0

sums, each with a single rectangle. How does the average
of these left and right endpoint sums compare with the

1
actual value f tdt?
0

1

140. Estimate / tdt by comparison with the area of a
0

single rectangle with height equal to the value of t at the

1

midpoint ¢ = >

. How does this midpoint estimate compare

1
with the actual value f tdt?
0

141. From the graph of sin(2zx) shown:

1
a. Explain why / sin2zt)dt = 0.
0

a+1
b. Explain why, in general, / sin(2zt)dt = 0 for
a

any value of a.

y
14+

05+

S0 Y
-051
71..

o
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142. If f is 1-periodic (f(zr+ 1) = f(1)),
[0, 1], is it

odd, and

integrable over always true that

1
/ f(t)ydt =0?
0

1
143. If f is 1-periodic and f f(ode = A, s it
0

l+a
necessarily true that / f(®dt = A for all A?
a
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5.3 | The Fundamental Theorem of Calculus

Learning Objectives

5.3.1 Describe the meaning of the Mean Value Theorem for Integrals.

5.3.2 State the meaning of the Fundamental Theorem of Calculus, Part 1.

5.3.3 Use the Fundamental Theorem of Calculus, Part 1, to evaluate derivatives of integrals.
5.3.4 State the meaning of the Fundamental Theorem of Calculus, Part 2.

5.3.5 Use the Fundamental Theorem of Calculus, Part 2, to evaluate definite integrals.

5.3.6 Explain the relationship between differentiation and integration.

In the previous two sections, we looked at the definite integral and its relationship to the area under the curve of a function.
Unfortunately, so far, the only tools we have available to calculate the value of a definite integral are geometric area
formulas and limits of Riemann sums, and both approaches are extremely cumbersome. In this section we look at some
more powerful and useful techniques for evaluating definite integrals.

These new techniques rely on the relationship between differentiation and integration. This relationship was discovered and
explored by both Sir Isaac Newton and Gottfried Wilhelm Leibniz (among others) during the late 1600s and early 1700s,
and it is codified in what we now call the Fundamental Theorem of Calculus, which has two parts that we examine in this
section. Its very name indicates how central this theorem is to the entire development of calculus.

@ Isaac Newton’s contributions to mathematics and physics changed the way we look at the world. The relationships

he discovered, codified as Newton’s laws and the law of universal gravitation, are still taught as foundational
material in physics today, and his calculus has spawned entire fields of mathematics. To learn more, read a brief
biography (http:/lwww.openstax.org/li20 newtonbio) of Newton with multimedia clips.

Before we get to this crucial theorem, however, let’s examine another important theorem, the Mean Value Theorem for
Integrals, which is needed to prove the Fundamental Theorem of Calculus.

The Mean Value Theorem for Integrals

The Mean Value Theorem for Integrals states that a continuous function on a closed interval takes on its average value
at some point in that interval. The theorem guarantees that if f(x) is continuous, a point c exists in an interval [a, b] such

that the value of the function at c is equal to the average value of f(x) over [a, b]. We state this theorem mathematically

with the help of the formula for the average value of a function that we presented at the end of the preceding section.

Theorem 5.3: The Mean Value Theorem for Integrals

If f(x) is continuous over an interval [a, b], then there is at least one point ¢ € [a, b| such that

b 5.15
@ =512 [ fedx. L

This formula can also be stated as

b
fa f@)dx = f(c)b — a).

Proof
Since f(x) is continuous on [a, b], by the extreme value theorem (see Maxima and Minima), it assumes minimum and
maximum values—m and M, respectively—on [a, b]. Then, for all x in [a, b], we have m < f(x) < M. Therefore, by

the comparison theorem (see The Definite Integral), we have

b
m(b — a) < / F)dx < M(b - a).
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Dividing by b — a gives us

b
m<+afaf(x)dx$M.

1
b—a

la, b], by the Intermediate Value Theorem (see Continuity), there is a number c over [a, b| such that

Since

b
f f(x)dx is a number between m and M, and since f(x) is continuous and assumes the values m and M over
a

b
f@ =5 [ f@r.

and the proof is complete.

O

Example 5.15

Finding the Average Value of a Function

Find the average value of the function f(x) = 8 — 2x over the interval [0, 4] and find c such that f(c) equals

the average value of the function over [0, 4].

Solution

The formula states the mean value of f(x) is given by

4
1 -
5 fo (8 — 2x)dx.

We can see in Figure 5.26 that the function represents a straight line and forms a right triangle bounded by the
x- and y-axes. The area of the triangle is A = %(base)(height). We have

A=1@® =16,
The average value is found by multiplying the area by 1/(4 — 0). Thus, the average value of the function is
16 =
4(16) =4.

Set the average value equal to f(c) and solve for c.

8§—2c =
c = 2

~

Atc=2, f(2)=4.
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®© =

f(x) = 8 — 2x

2

14

SO 1o 23 AN %
-1+

Figure 5.26 By the Mean Value Theorem, the continuous
function f(x) takes on its average value at c at least once over

a closed interval.

@ 5.14 Find the average value of the function f(x) :% over the interval [0, 6] and find ¢ such that f(c)

equals the average value of the function over [0, 6].

Example 5.16

Finding the Point Where a Function Takes on Its Average Value
3

Given / x2dx = 9, find c such that f(c) equals the average value of f(x) = x2 over [0, 3].
0

Solution

We are looking for the value of ¢ such that
3
—_1 2. _ 1y —
flor=51 O/Ox dx=10©)=3.
Replacing f(c) with ¢, we have

2 =3

c = V3.

Since —V3 is outside the interval, take only the positive value. Thus, ¢ = V3 (Figure 5.27).
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f(x) = x2

(43, 3)

1+

2 -10 1 2 3 4 5%
-14

Figure 5.27 Over the interval [0, 3], the function

fx) = x? takes on its average value at ¢ = V3.

515 3, . 2
Given / (2x - l)dx =15, find c such that f(c) equals the average value of f(x) =2x“—1 over
0

[0, 3].

Fundamental Theorem of Calculus Part 1: Integrals and
Antiderivatives

As mentioned earlier, the Fundamental Theorem of Calculus is an extremely powerful theorem that establishes the
relationship between differentiation and integration, and gives us a way to evaluate definite integrals without using Riemann
sums or calculating areas. The theorem is comprised of two parts, the first of which, the Fundamental Theorem of
Calculus, Part 1, is stated here. Part 1 establishes the relationship between differentiation and integration.

Theorem 5.4: Fundamental Theorem of Calculus, Part 1

If f(x) is continuous over an interval [a, b], and the function F(x) is defined by

F(x) = fa o (5.16)

then F’(x) = f(x) over [a, b].

Before we delve into the proof, a couple of subtleties are worth mentioning here. First, a comment on the notation. Note that
we have defined a function, F(x), as the definite integral of another function, f(¢), from the point a to the point x. At

first glance, this is confusing, because we have said several times that a definite integral is a number, and here it looks like
it’s a function. The key here is to notice that for any particular value of x, the definite integral is a number. So the function
F(x) returns a number (the value of the definite integral) for each value of x.
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Second, it is worth commenting on some of the key implications of this theorem. There is a reason it is called the
Fundamental Theorem of Calculus. Not only does it establish a relationship between integration and differentiation, but
also it guarantees that any integrable function has an antiderivative. Specifically, it guarantees that any continuous function
has an antiderivative.

Proof

Applying the definition of the derivative, we have

F(x+ h) — F(x)
h—-0 h

X+h X

= lim %[ fa f(dt — fa f(t)dt]
x+h a

=hh—I>nO%[ fa fdt + fx f(t)dt]
x+h

=h11ln()% fx " f(t)dt.

x+h
Looking carefully at this last expression, we see % / f(®)dt is just the average value of the function f(x) over the
X

interval [x, x + h]. Therefore, by The Mean Value Theorem for Integrals, there is some number c in [x, x + h] such
that

x+h
1 / F)dx = f(c).

In addition, since c is between x and x + h, ¢ approaches x as h approaches zero. Also, since f(x) is continuous, we have

lim f(c) = lim xf(c) = f(x). Putting all these pieces together, we have
h—0 ¢ =

x+h
F' (x) :hli_r)n()% fx ’ F)dx
=}zli—r>mof ©
= f(x),

and the proof is complete.

O

Example 5.17

Finding a Derivative with the Fundamental Theorem of Calculus

Use the Fundamental Theorem of Calculus, Part 1 to find the derivative of

X
(x)=J Ly
§ 1

Solution

According to the Fundamental Theorem of Calculus, the derivative is given by

! l
g (x)= .
x3+1
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,
@ 5.16 Use the Fundamental Theorem of Calculus, Part 1 to find the derivative of g(r) = / Vx? + 4dbx.
0

Example 5.18

Using the Fundamental Theorem and the Chain Rule to Calculate Derivatives

VX
Let F(x) = f sintdt. Find F’ (x).
1

Solution

u(x)
Letting u(x) = vx, wehave F(x) = f sintdt. Thus, by the Fundamental Theorem of Calculus and the chain
1

rule,

F' (x)

sin(u(x))fi—z

sin(u(x)) - (%x_u 2)

— sinvx
2vx

@ 5.17 *3
Let F(x) = / costdt. Find F’ (x).
1

Example 5.19

Using the Fundamental Theorem of Calculus with Two Variable Limits of
Integration

2x
Let F(x) = / A dr. Find F’ (x).
X

Solution

2x
We have F(x) = f 13 dt. Both limits of integration are variable, so we need to split this into two integrals. We
X

get
2x
Fx) = Bar
) f
0 2x
3 3
= t”dt + t”dt
[ra+ [

X 2x
=—/ t3dt+/ ar.
0 0
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Differentiating the first term, we obtain

dl s 3
dx[fotdt]_ x”.

Differentiating the second term, we first let u(x) = 2x. Then,

2x u(x)

d| 3 _d 3

dx[/o t dz] _dx[fo t dt]
_ 3du
= (u(x)) dx
=2x3-2
= 16x°.

Thus,

fozxﬁ dt]

, _d|l_r's d|
F'(x) = dx[ fot dt]+ dx[
=—)c3+16)c3

= 15x3.

@ 5.18 +2
Let F(x) = / costdt. Find F’ (x).

X

Fundamental Theorem of Calculus, Part 2: The Evaluation Theorem

The Fundamental Theorem of Calculus, Part 2, is perhaps the most important theorem in calculus. After tireless efforts
by mathematicians for approximately 500 years, new techniques emerged that provided scientists with the necessary tools
to explain many phenomena. Using calculus, astronomers could finally determine distances in space and map planetary
orbits. Everyday financial problems such as calculating marginal costs or predicting total profit could now be handled with
simplicity and accuracy. Engineers could calculate the bending strength of materials or the three-dimensional motion of
objects. Our view of the world was forever changed with calculus.

After finding approximate areas by adding the areas of n rectangles, the application of this theorem is straightforward by
comparison. It almost seems too simple that the area of an entire curved region can be calculated by just evaluating an
antiderivative at the first and last endpoints of an interval.

Theorem 5.5: The Fundamental Theorem of Calculus, Part 2

If fis continuous over the interval [a, b] and F(x) is any antiderivative of f(x), then

b (5.17)
/a f()dx = F(b) — F(a).

We often see the notation F (x)lg to denote the expression F(b) — F(a). We use this vertical bar and associated limits a
and b to indicate that we should evaluate the function F(x) at the upper limit (in this case, b), and subtract the value of the

function F(x) evaluated at the lower limit (in this case, a).

The Fundamental Theorem of Calculus, Part 2 (also known as the evaluation theorem) states that if we can find an
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antiderivative for the integrand, then we can evaluate the definite integral by evaluating the antiderivative at the endpoints
of the interval and subtracting.

Proof

Let P ={x;},i=0, 1,...,n be aregular partition of [a, b]. Then, we can write

F(b) = F(a) = F(xp) — F(xp)
=[F(xp) — F(x, _ D]+ [F(x,_ 1) = FGx, )]+ ... +[F(xy) — F(xp)]

= D [FGr) - Fxi_ )]
i=1

Now, we know F is an antiderivative of f over [a, b], so by the Mean Value Theorem (see The Mean Value Theorem)

for i=0, 1,...,n wecanfind ¢; in [x;_, x;] such that
F(x) = F(x;_ 1) =F (cj)x;— x;_ ) = flcpAx.

Then, substituting into the previous equation, we have
n
F(b) - Fla)= ), f(c)Ax.
i=1

Taking the limit of both sides as n — o0, we obtain

F(b) - F(a) = lim_ Y, f(c)Ax
i=1

fu ’ F)dx.

O

Example 5.20

Evaluating an Integral with the Fundamental Theorem of Calculus

Use The Fundamental Theorem of Calculus, Part 2 to evaluate
2
2
t° —4)dt.
/7=

Solution
Recall the power rule for Antiderivatives:
o n _ xn+l
Ify=x ,/x dx——n+1 +C.

Use this rule to find the antiderivative of the function and then apply the theorem. We have

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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Analysis

Notice that we did not include the “+ C” term when we wrote the antiderivative. The reason is that, according
to the Fundamental Theorem of Calculus, Part 2, any antiderivative works. So, for convenience, we chose the
antiderivative with C = 0. If we had chosen another antiderivative, the constant term would have canceled out.

This always happens when evaluating a definite integral.

The region of the area we just calculated is depicted in Figure 5.28. Note that the region between the curve
and the x-axis is all below the x-axis. Area is always positive, but a definite integral can still produce a negative
number (a net signed area). For example, if this were a profit function, a negative number indicates the company
is operating at a loss over the given interval.

S

fty =12 -4

Figure 5.28 The evaluation of a definite integral can produce
a negative value, even though area is always positive.

Example 5.21

Evaluating a Definite Integral Using the Fundamental Theorem of Calculus, Part 2

Evaluate the following integral using the Fundamental Theorem of Calculus, Part 2:

9x -1
. de

Solution
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First, eliminate the radical by rewriting the integral using rational exponents. Then, separate the numerator terms
by writing each one over the denominator:

9 | 9 1
X— Llidx = J (_x - —)dx.
J] 1/2 . x1/2 x1/2

Use the properties of exponents to simplify:
9

Jl(ﬁ_#)d =f( 172 _ _1/2)dx

Now, integrate using the power rule:

9 32 12
_/ (xuz _ x—1/2)dx _ [x X
1

[ )32 (9)1/2] [(1)3/2_(1)1/2]
Fd

[—(27) 2(3)] [20)-201)]

=18—-6-— § +2
— 40
3
See Figure 5.29.
y
_x-1
3l flx) ==
0 +
/ I

Figure 5.29 The area under the curve from x =1 to x =9
can be calculated by evaluating a definite integral.

5.19 2
@ Use The Fundamental Theorem of Calculus, Part 2 to evaluate f x4 dx.
1

A Roller-Skating Race

James and Kathy are racing on roller skates. They race along a long, straight track, and whoever has gone the

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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farthest after 5 sec wins a prize. If James can skate at a velocity of f() =5+ 2t ft/sec and Kathy can skate at a

velocity of g(¢) =10+ cos(%t) ft/sec, who is going to win the race?

Solution
We need to integrate both functions over the interval [0, 5] and see which value is bigger. For James, we want to

calculate
5
[ 5 +20dr.
0
Using the power rule, we have

/5(5 +20dt = (5t+ t2)|(5)
0
= (25 +25) =50.

Thus, James has skated 50 ft after 5 sec. Turning now to Kathy, we want to calculate
5
/ 10 + cos(ﬂz)dt.
0 2

We know sint is an antiderivative of cos?, so it is reasonable to expect that an antiderivative of cos(it) would

2
involve sin(%t). However, when we differentiate sin(%t), we get %cos(%z) as a result of the chain rule, so we
have to account for this additional coefficient when we integrate. We obtain

fOS]O + cos(%t)dt = (10t + %sin(%t))hs)
= (50+2) - (0 - Zsin0)
~ 50.6.

Kathy has skated approximately 50.6 ft after 5 sec. Kathy wins, but not by much!

5.20 Suppose James and Kathy have a rematch, but this time the official stops the contest after only 3 sec.
Does this change the outcome?
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¥ Student PROJECT

A Parachutist in Free Fall

B 4

Figure 5.30 Skydivers can adjust the velocity of their dive by changing the position of their body duﬁng the
free fall. (credit: Jeremy T. Lock)

Julie is an avid skydiver. She has more than 300 jumps under her belt and has mastered the art of making adjustments
to her body position in the air to control how fast she falls. If she arches her back and points her belly toward the
ground, she reaches a terminal velocity of approximately 120 mph (176 ft/sec). If, instead, she orients her body with
her head straight down, she falls faster, reaching a terminal velocity of 150 mph (220 ft/sec).

Since Julie will be moving (falling) in a downward direction, we assume the downward direction is positive to simplify
our calculations. Julie executes her jumps from an altitude of 12,500 ft. After she exits the aircraft, she immediately
starts falling at a velocity given by v(¢#) = 32¢. She continues to accelerate according to this velocity function until she

reaches terminal velocity. After she reaches terminal velocity, her speed remains constant until she pulls her ripcord
and slows down to land.

On her first jump of the day, Julie orients herself in the slower “belly down” position (terminal velocity is 176 ft/sec).
Using this information, answer the following questions.

1. How long after she exits the aircraft does Julie reach terminal velocity?

2. Based on your answer to question 1, set up an expression involving one or more integrals that represents the
distance Julie falls after 30 sec.

3. If Julie pulls her ripcord at an altitude of 3000 ft, how long does she spend in a free fall?

Julie pulls her ripcord at 3000 ft. It takes 5 sec for her parachute to open completely and for her to slow down,
during which time she falls another 400 ft. After her canopy is fully open, her speed is reduced to 16 ft/sec.
Find the total time Julie spends in the air, from the time she leaves the airplane until the time her feet touch the
ground.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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Figure 5.31 The fabric panels on the arms and legs of a wingsuit work to reduce the vertical velocity of a

On Julie’s second jump of the day, she decides she wants to fall a little faster and orients herself in the “head
down” position. Her terminal velocity in this position is 220 ft/sec. Answer these questions based on this
velocity:

How long does it take Julie to reach terminal velocity in this case?

Before pulling her ripcord, Julie reorients her body in the “belly down” position so she is not moving quite as
fast when her parachute opens. If she begins this maneuver at an altitude of 4000 ft, how long does she spend
in a free fall before beginning the reorientation?

Some jumpers wear “ wingsuits” (see Figure 5.31). These suits have fabric panels between the arms and legs
and allow the wearer to glide around in a free fall, much like a flying squirrel. (Indeed, the suits are sometimes
called “flying squirrel suits.”) When wearing these suits, terminal velocity can be reduced to about 30 mph (44
ft/sec), allowing the wearers a much longer time in the air. Wingsuit flyers still use parachutes to land; although
the vertical velocities are within the margin of safety, horizontal velocities can exceed 70 mph, much too fast
to land safely.

skydiver’s fall. (credit: Richard Schneider)

Answer the following question based on the velocity in a wingsuit.

7.

If Julie dons a wingsuit before her third jump of the day, and she pulls her ripcord at an altitude of 3000 ft, how
long does she get to spend gliding around in the air?
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5.3 EXERCISES

144. Consider two athletes running at variable speeds
vy (@ and v, (?). The runners start and finish a race at

exactly the same time. Explain why the two runners must
be going the same speed at some point.

145. Two mountain climbers start their climb at base
camp, taking two different routes, one steeper than the
other, and arrive at the peak at exactly the same time. Is it
necessarily true that, at some point, both climbers increased
in altitude at the same rate?

146. To get on a certain toll road a driver has to take a
card that lists the mile entrance point. The card also has a
timestamp. When going to pay the toll at the exit, the driver
is surprised to receive a speeding ticket along with the toll.
Explain how this can happen.

X

147. Set F(x)= [ (1-ndr. Find F'(2) and the
1

average value of F " over [1, 2].

In the following exercises, use the Fundamental Theorem
of Calculus, Part 1, to find each derivative.

d [,
148. dx/le dt

d ¥ cost
149. dx/le dt

d X
150. 5/3 V9 — y2dy

X
d J ds
151. = | —==—
dx 44 16 _ S2

2x
d
152. 4 /x 1dt
E
d
153, 4 /O 1dt
sinx
154. i/ V1 — 2dr
dx 0

1
d 2
155. dx/ V1= 2ds

COoSx

vx 2
156. %J L dr
L1+
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x2
157. ij Vg
dx 1 1+¢
Inx
158. L[ eldr
dx 0
4
159. 5/1 Inu? du

X
160. The graph of y = / f(H)dt, where fis a piecewise
0

constant function, is shown here.
y
a1
34
24

14

O 1 2 3 4 5 6%

a. Over which intervals is f positive? Over which
intervals is it negative? Over which intervals, if
any, is it equal to zero?

What are the maximum and minimum values of f?

c. What is the average value of f?

X
161. The graphof y = / f(t)dt, where fis a piecewise
0

constant function, is shown here.
y
21
1+

0

-1+

24

a. Over which intervals is f positive? Over which
intervals is it negative? Over which intervals, if
any, is it equal to zero?

What are the maximum and minimum values of f?

c. What is the average value of f?
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X
162. The graphof y = / £(t)dt, where £ is a piecewise
0

linear function, is shown here.

\i/z 3 4 5 6X
41q.

a. Over which intervals is € positive? Over which
intervals is it negative? Over which, if any, is it
zero?

b. Over which intervals is € increasing? Over which is
it decreasing? Over which, if any, is it constant?

c. What is the average value of £?

X
163. The graphof y = / £(t)dt, where £ is a piecewise
0

linear function, is shown here.

y
21

14

0 I i 4 I I
1 2\3/ 5 6X
7lq-

24

a. Over which intervals is ¢ positive? Over which
intervals is it negative? Over which, if any, is it
zero?

b. Over which intervals is ¢ increasing? Over which
is it decreasing? Over which intervals, if any, is it
constant?

c. What is the average value of £?

In the following exercises, use a calculator to estimate the
area under the curve by computing Tyo, the average of
the left- and right-endpoint Riemann sums using N = 10

rectangles. Then, using the Fundamental Theorem of
Calculus, Part 2, determine the exact area.

164. [T] y = x2 over [0, 4]

165. [T] y = W+ 6x2+x—5 over [—4, 2]
166. [T] y = Vx> over [0, 6]

167. [T y = v+ x> over [1, 9]

168. [T] / (cosx — sinx)dx over [0, ]

563

169. [T] Jizdx over [1, 4]
x

In the following exercises, evaluate each definite integral
using the Fundamental Theorem of Calculus, Part 2.

170. ? x2 — 3x)dx
[

3

171. x2+3x—5 X
-2

3
172. f (t+2)(t = 3)dt
-2

73 [ -0 P
2
2

174, [ x%dx
1

1
175. / x% dx
0

176. /8(4t5/2 - 3t3/2)dt

4
4

177. J (xz—%)dx
1/4 X
2

178. J%dx
1x
|

179. Jlﬁdx

4
180. J 2Ny

1 t
16
dt
181. J 7
1 t

T
182. f cosfde
0

183. / sin6do
0
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/4
184. / sec20do
0

/4
185. / secHtandd
0

/4
186. / csclcotfdo
/3

/2
csc26do

187. /

/4

188. (i—l)dt
J VAR S

In the following exercises, use the evaluation theorem to
express the integral as a function F(x).

X
2
190. t=dt
/,
X
191. e'dt
/

X
192. / costdt
0

X
193. / sinzdt
—X

In the following exercises, identify the roots of the
integrand to remove absolute values, then evaluate using
the Fundamental Theorem of Calculus, Part 2.

3
194. |xldx
-2

195. ! 12— 21— 3|ds
/ |
-2

ya
196. / lcos 7ldt
0

/2
197. |sinz|dt
—n/2

Chapter 5 | Integration

198. Suppose that the number of hours of daylight on
a given day in Seattle is modeled by the function

—3.75005(%)+ 12.25, with t given in months and

t = 0 corresponding to the winter solstice.
a. What is the average number of daylight hours in a
year?
b. At which times ¢ and t, where
0<t;<t;<12, do the number of daylight

hours equal the average number?
c. Write an integral that expresses the total number of
daylight hours in Seattle between #; and 7,.

d. Compute the mean hours of daylight in Seattle
between 7; and #,, where 0 <1t <1, <12,

and then between f, and f;, and show that the

average of the two is equal to the average day
length.

199. Suppose the rate of gasoline consumption over the
course of a year in the United States can be modeled by a

sinusoidal function of the form (11.21 - cos(%t)) % 10?

gal/mo.

a. What is the average monthly consumption, and for
which values of ¢ is the rate at time t equal to the
average rate?

b. What is the number of gallons of gasoline
consumed in the United States in a year?

c. Write an integral that expresses the average
monthly U.S. gas consumption during the part of
the year between the beginning of April (t = 3)

and the end of September (¢ = 9).

200. Explain why, if f is continuous over [a, b], there

is at least one point ¢ €Ela, b] such that

b
@ =512 [ ra.

201. Explain why, if f is continuous over [a, b] and is not

equal to a constant, there is at least one point M € [a, b]

b
such that f(M) = ﬁ/ f(®)dt and at least one point
- a

b
m € [a, b] such that f(m) < ﬁ f F(t)dt.
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202. Kepler’s first law states that the planets move in
elliptical orbits with the Sun at one focus. The closest point
of a planetary orbit to the Sun is called the perihelion (for
Earth, it currently occurs around January 3) and the farthest
point is called the aphelion (for Earth, it currently occurs
around July 4). Kepler’s second law states that planets
sweep out equal areas of their elliptical orbits in equal
times. Thus, the two arcs indicated in the following figure
are swept out in equal times. At what time of year is Earth
moving fastest in its orbit? When is it moving slowest?

203. A point on an ellipse with major axis length 2a
and minor axis length 2b has the coordinates
(acos@, bsind), 0 < 6 < 2x.

a. Show that the distance from this point to the focus
at  (—¢,0) is d(@) =a+ ccosb, where

c=Va? - b2
b. Use these coordinates to show that the average

distance d froma point on the ellipse to the focus
at (—c, 0), with respect to angle 6, is a.

204. As implied earlier, according to Kepler’s laws,
Earth’s orbit is an ellipse with the Sun at one focus. The
perihelion for Earth’s orbit around the Sun is 147,098,290
km and the aphelion is 152,098,232 km.

a. By placing the major axis along the x-axis, find the
average distance from Earth to the Sun.

b. The classic definition of an astronomical unit (AU)
is the distance from Earth to the Sun, and its value
was computed as the average of the perihelion and
aphelion distances. Is this definition justified?

205. The force of gravitational attraction between the Sun

GmM
2 (0)

and a planet is F(0) = where m is the mass of the
planet, M is the mass of the Sun, G is a universal constant,
and r(@) is the distance between the Sun and the planet

when the planet is at an angle 0 with the major axis of its
orbit. Assuming that M, m, and the ellipse parameters a
and b (half-lengths of the major and minor axes) are given,
set up—but do not evaluate—an integral that expresses in
terms of G, m, M, a, b the average gravitational force

between the Sun and the planet.

565

206. The displacement from rest of a mass attached to
a spring satisfies the simple harmonic motion equation
x(t) = Acos(wt — ¢p), where ¢ is a phase constant, ® is

the angular frequency, and A is the amplitude. Find the
average velocity, the average speed (magnitude of
velocity), the average displacement, and the average
distance from rest (magnitude of displacement) of the
mass.
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5.4 | Integration Formulas and the Net Change Theorem

Learning Objectives

5.4.1 Apply the basic integration formulas.

5.4.2 Explain the significance of the net change theorem.
5.4.3 Use the net change theorem to solve applied problems.
5.4.4 Apply the integrals of odd and even functions.

In this section, we use some basic integration formulas studied previously to solve some key applied problems. It is
important to note that these formulas are presented in terms of indefinite integrals. Although definite and indefinite integrals
are closely related, there are some key differences to keep in mind. A definite integral is either a number (when the limits
of integration are constants) or a single function (when one or both of the limits of integration are variables). An indefinite
integral represents a family of functions, all of which differ by a constant. As you become more familiar with integration,
you will get a feel for when to use definite integrals and when to use indefinite integrals. You will naturally select the correct
approach for a given problem without thinking too much about it. However, until these concepts are cemented in your mind,
think carefully about whether you need a definite integral or an indefinite integral and make sure you are using the proper
notation based on your choice.

Basic Integration Formulas

Recall the integration formulas given in the table in Antiderivatives and the rule on properties of definite integrals. Let’s
look at a few examples of how to apply these rules.

Example 5.23

Integrating a Function Using the Power Rule
4

Use the power rule to integrate the function f Vi(l + t)dt.
1

Solution

The first step is to rewrite the function and simplify it so we can apply the power rule:

4 4
f Vil + f)dt =/ V21 + nat
1 1

_ /4(t1/2 + 21
1

Now apply the power rule:

/14(t1/2 + t3/2)d (%
[% @32 4 2(4)5/2] [(1)3/2+%(1)5/2]

256
15°

+2 5/2)“:

@ 5.21  Find the definite integral of f(x) = x> — 3x over the interval [1, 3].
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The Net Change Theorem

The net change theorem considers the integral of a rate of change. It says that when a quantity changes, the new value
equals the initial value plus the integral of the rate of change of that quantity. The formula can be expressed in two ways.
The second is more familiar; it is simply the definite integral.

Theorem 5.6: Net Change Theorem

The new value of a changing quantity equals the initial value plus the integral of the rate of change:

b (5.18)
F(b) = Fa) + f F'(x)dx

or

b
f F'(x)dx = F(b) — F(a).

Subtracting F(a) from both sides of the first equation yields the second equation. Since they are equivalent formulas, which
one we use depends on the application.
The significance of the net change theorem lies in the results. Net change can be applied to area, distance, and volume, to

name only a few applications. Net change accounts for negative quantities automatically without having to write more than
one integral. To illustrate, let’s apply the net change theorem to a velocity function in which the result is displacement.

We looked at a simple example of this in The Definite Integral. Suppose a car is moving due north (the positive direction)
at 40 mph between 2 p.m. and 4 p.m., then the car moves south at 30 mph between 4 p.m. and 5 p.m. We can graph this
motion as shown in Figure 5.32.

v
40t

30+

20+

10+

0

~-104+

—20+4

-30+

Figure 5.32 The graph shows speed versus time for the given
motion of a car.

Just as we did before, we can use definite integrals to calculate the net displacement as well as the total distance traveled.
The net displacement is given by

5 4 3
f vidt = f 40dr + j —30ds
2 2 4
=80-30
= 50.

Thus, at 5 p.m. the car is 50 mi north of its starting position. The total distance traveled is given by
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5

5 4
/ W(oldt = f 40dt+J30dt
2 2 4

=80+ 30
=110.

Therefore, between 2 p.m. and 5 p.m., the car traveled a total of 110 mi.

To summarize, net displacement may include both positive and negative values. In other words, the velocity function
accounts for both forward distance and backward distance. To find net displacement, integrate the velocity function over
the interval. Total distance traveled, on the other hand, is always positive. To find the total distance traveled by an object,
regardless of direction, we need to integrate the absolute value of the velocity function.

Example 5.24

Finding Net Displacement

Given a velocity function v(¢#) = 3f — 5 (in meters per second) for a particle in motion from time ¢ = 0 to time

t =3, find the net displacement of the particle.

Solution
Applying the net change theorem, we have

3 2 3
/ (3t —5)dt = %— 5t|
0 0

_[33?
= [T_ 5(3)]— 0

=27 _
=3 15

_27_30
2 2

The net displacement is —% m (Figure 5.33).
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vty =3t - 5

Figure 5.33 The graph shows velocity versus time for a
particle moving with a linear velocity function.

Example 5.25

Finding the Total Distance Traveled

Use Example 5.24 to find the total distance traveled by a particle according to the velocity function
v(t) = 3t — 5 m/sec over a time interval [0, 3].

Solution

The total distance traveled includes both the positive and the negative values. Therefore, we must integrate the
absolute value of the velocity function to find the total distance traveled.

To continue with the example, use two integrals to find the total distance. First, find the t-intercept of the function,
since that is where the division of the interval occurs. Set the equation equal to zero and solve for t. Thus,

3t-5 =0
3t =5
= 3
t= 3

The two subintervals are [O, %] and [%, 3]. To find the total distance traveled, integrate the absolute value of

the function. Since the function is negative over the interval [O, %], we have |v(f)] = —v(f) over that interval.

Over [%, 3], the function is positive, so |v(¢)| = v(¢). Thus, we have
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5/3 3
f v(0)\dt =J —v(0)dt + f V(t)dt
0 0 5/3

:/5/35—3tdt+/3 31— 5dt
0

5/3
5/3 3

_ 32 312
= (5“7)\0 * (7— 5’)|5f3

5\_363 |27 _15]_[363)° 25
5(3) 2 0+[2 15] 2 3
25,27 _15_.25,25

6 2 6 3

Il
—

o vl

So, the total distance traveled is 6 m.

5.22 Find the net displacement and total distance traveled in meters given the velocity function
f(t) = %el — 2 over the interval [0, 2].

Applying the Net Change Theorem

The net change theorem can be applied to the flow and consumption of fluids, as shown in Example 5.26.

Example 5.26

How Many Gallons of Gasoline Are Consumed?

If the motor on a motorboat is started at = O and the boat consumes gasoline at 5 — 3 gal/hr for the first hour,
how much gasoline is used in the first hour?

Solution

Express the problem as a definite integral, integrate, and evaluate using the Fundamental Theorem of Calculus.
The limits of integration are the endpoints of the interval [0, 1]. We have

/01(5 - t3)dt = (5t - %)|;
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Thus, the motorboat uses 4.75 gal of gas in 1 hour.

Example 5.27

Chapter Opener: Iceboats

Figure 5.34 (credit: modification of work by Carter Brown,
Flickr)

As we saw at the beginning of the chapter, top iceboat racers (Figure 5.1) can attain speeds of up to five times the
wind speed. Andrew is an intermediate iceboater, though, so he attains speeds equal to only twice the wind speed.
Suppose Andrew takes his iceboat out one morning when a light 5-mph breeze has been blowing all morning. As
Andrew gets his iceboat set up, though, the wind begins to pick up. During his first half hour of iceboating, the
wind speed increases according to the function v(f) = 20¢ + 5. For the second half hour of Andrew’s outing, the

wind remains steady at 15 mph. In other words, the wind speed is given by

20t + 5 for 05;3%

15 for%gtsl.

w(t) =

Recalling that Andrew’s iceboat travels at twice the wind speed, and assuming he moves in a straight line away
from his starting point, how far is Andrew from his starting point after 1 hour?

Solution

To figure out how far Andrew has traveled, we need to integrate his velocity, which is twice the wind speed. Then

1
Distance = / 2v(t)dt.
0

Substituting the expressions we were given for v(f), we get
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172

1 1
/ wndt = | 2v@dr + f 2v(r)dt
0 Jo 12
.1/2 1
= | 200t+5)dt + / 2(15)dt
Jo 1/3
~1/2 1
= | @or+10)dr+ [ 30d
J 1/2
0
_ 2 1/2 1
= [20t + 10t]| o2+ 301},
(20 . <\ _ _
_(4+5) 0+ (30 — 15)
=25,

Andrew is 25 mi from his starting point after 1 hour.

@ 5.23 Suppose that, instead of remaining steady during the second half hour of Andrew’s outing, the wind
starts to die down according to the function v(r) = —10¢ 4+ 15. In other words, the wind speed is given by

201+ 5 for 0 <t <

1
Wt) = 2
1.

—10t+ 15 for %Stﬁ

Under these conditions, how far from his starting point is Andrew after 1 hour?

Integrating Even and Odd Functions

We saw in Functions and Graphs that an even function is a function in which f(—x) = f(x) for all x in the

domain—that is, the graph of the curve is unchanged when x is replaced with —x. The graphs of even functions are
symmetric about the y-axis. An odd function is one in which f(—x) = —f(x) for all x in the domain, and the graph of the

function is symmetric about the origin.

Integrals of even functions, when the limits of integration are from —a to a, involve two equal areas, because they are
symmetric about the y-axis. Integrals of odd functions, when the limits of integration are similarly [—a, a], evaluate to

zero because the areas above and below the x-axis are equal.

Rule: Integrals of Even and Odd Functions

For continuous even functions such that f(—x) = f(x),

@ a
[ Fx)dx =2 f Fx)dx.
—a 0
For continuous odd functions such that f(—x) = —f(x),

f_a F(x)dx = 0.
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Example 5.28

Integrating an Even Function

2
Integrate the even function / (3x8 - Z)dx and verify that the integration formula for even functions holds.
-2

Solution

The symmetry appears in the graphs in Figure 5.35. Graph (a) shows the region below the curve and above the
x-axis. We have to zoom in to this graph by a huge amount to see the region. Graph (b) shows the region above
the curve and below the x-axis. The signed area of this region is negative. Both views illustrate the symmetry
about the y-axis of an even function. We have

fz (3x8 - 2)dx = (%9— Zx)

-2

To verify the integration formula for even functions, we can calculate the integral from 0 to 2 and double it, then
check to make sure we get the same answer.

e - ().
/0(3x 2)dx =13 2x .
=%—4
_ 500
3

Since 2 53@ = %, we have verified the formula for even functions in this particular example.

yi o of(x) =3x8 -2 yi fix) =3x8 -2
+ 5+ .
00! e |
s |
l 2+ l
200+ 11
_é -1 0 il é X

2 -1 O 1 2x

@) (b)
Figure 5.35 Graph (a) shows the positive area between the curve and the x-axis, whereas graph (b) shows the negative area
between the curve and the x-axis. Both views show the symmetry about the y-axis.
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Example 5.29

Integrating an Odd Function

Evaluate the definite integral of the odd function —5sinx over the interval [—z, x].

Solution

The graph is shown in Figure 5.36. We can see the symmetry about the origin by the positive area above the
x-axis over [—z, 0], and the negative area below the x-axis over [0, z]. We have

T
/ ~Ssinxdx = —5(—cos)|”
-

= Scosx|”

= [5cosx] —[5cos(—n)]
=-5-(-5)

=0.

y f i

4 (x) = 5sin x

0 X

-51

Figure 5.36 The graph shows areas between a curve and the
x-axis for an odd function.

5.24 2
Integrate the function f x"dx.
-2
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5.4 EXERCISES

Use basic integration formulas to compute the following
antiderivatives or definite integrals.

207. f (ﬁ - %)dx

208. J(€2x - %exm)dx

dx

209. sz

210. J%dx
X

/3
211. / (sinx — cosx)dx
0

/2
212. f (x — sinx)dx
0

213. Write an integral that expresses the increase in the
perimeter P(s) of a square when its side length s increases

from 2 units to 4 units and evaluate the integral.

214. Write an integral that quantifies the change in the
area A(s)=s> of a square when the side length doubles

from S units to 2S units and evaluate the integral.

215. A regular N-gon (an N-sided polygon with sides that
have equal length s, such as a pentagon or hexagon) has
perimeter Ns. Write an integral that expresses the increase
in perimeter of a regular N-gon when the length of each side
increases from 1 unit to 2 units and evaluate the integral.

216. The area of a regular pentagon with side length
a >0 is pa® with p = % 5+ 5 + 2V/5. The Pentagon in

Washington, DC, has inner sides of length 360 ft and outer
sides of length 920 ft. Write an integral to express the area
of the roof of the Pentagon according to these dimensions
and evaluate this area.

217. A dodecahedron is a Platonic solid with a surface that
consists of 12 pentagons, each of equal area. By how much
does the surface area of a dodecahedron increase as the side
length of each pentagon doubles from 1 unit to 2 units?

218. An icosahedron is a Platonic solid with a surface that
consists of 20 equilateral triangles. By how much does the
surface area of an icosahedron increase as the side length of
each triangle doubles from a unit to 2a units?

219. Write an integral that quantifies the change in the
area of the surface of a cube when its side length doubles
from s unit to 2s units and evaluate the integral.
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220. Write an integral that quantifies the increase in the
volume of a cube when the side length doubles from s unit
to 2s units and evaluate the integral.

221. Write an integral that quantifies the increase in the
surface area of a sphere as its radius doubles from R unit to
2R units and evaluate the integral.

222. Write an integral that quantifies the increase in the
volume of a sphere as its radius doubles from R unit to 2R
units and evaluate the integral.

223. Suppose that a particle moves along a straight line
with velocity v(f) =4 — 2¢, where 0 <¢ <2 (in meters

per second). Find the displacement at time t and the total
distance traveled up to ¢ = 2.

224. Suppose that a particle moves along a straight line
with velocity defined by v(¢) = 2 —3¢— 18, where
0 <t < 6 (in meters per second). Find the displacement at

time ¢ and the total distance traveled up to ¢ = 6.

225. Suppose that a particle moves along a straight line
with velocity defined by v(r)=|2t—6|, where

0 <t < 6 (in meters per second). Find the displacement at
time t and the total distance traveled up to ¢ = 6.

226. Suppose that a particle moves along a straight line
with acceleration defined by a(f)=t—3, where

0 <t <6 (in meters per second). Find the velocity and

displacement at time t and the total distance traveled up to
t=06 if v(0) =3 and d(0) = 0.

227. A ball is thrown upward from a height of 1.5 m at
an initial speed of 40 m/sec. Acceleration resulting from
gravity is —9.8 m/sec?. Neglecting air resistance, solve for
the velocity v(f) and the height A(f) of the ball t seconds

after it is thrown and before it returns to the ground.

228. A ball is thrown upward from a height of 3 m at
an initial speed of 60 m/sec. Acceleration resulting from
gravity is —9.8 m/sec?. Neglecting air resistance, solve for
the velocity v(f) and the height A(f) of the ball t seconds

after it is thrown and before it returns to the ground.

229. The area A(¢) of a circular shape is growing at a

constant rate. If the area increases from 47 units to 97 units
between times f =2 and t = 3, find the net change in the

radius during that time.



576

230. A spherical balloon is being inflated at a constant
rate. If the volume of the balloon changes from 36 in.> to
2887 in. between time ¢ =30 and ¢ = 60 seconds, find

the net change in the radius of the balloon during that time.

231. Water flows into a conical tank with cross-sectional

3
area 7x’ at height x and volume % up to height x. If
water flows into the tank at a rate of 1 m3/min, find the
height of water in the tank after 5 min. Find the change in
height between 5 min and 10 min.

232. A horizontal cylindrical tank has cross-sectional area
Alx) = 4(6x - xz)m2 at height x meters above the bottom

when x < 3.
a. The volume V between heights a and b is

b
f A(x)dx. Find the volume at heights between 2
a

m and 3 m.

b. Suppose that oil is being pumped into the tank
at a rate of 50 L/min. Using the chain rule,
dx _ dx dV
dt dV dt’
the height of oil in the tank changing, expressed in
terms of x, when the height is at x meters?

c. How long does it take to fill the tank to 3 m starting
from a fill level of 2 m?

at how many meters per minute is

Chapter 5 | Integration

233. The following table lists the electrical power in
gigawatts—the rate at which energy is consumed—used in
a certain city for different hours of the day, in a typical
24-hour period, with hour 1 corresponding to midnight to 1
a.m.

Hour Power Hour Power
1 28 13 48
2 25 14 49
3 24 15 49
4 23 16 50
5 24 17 50
6 27 18 50
7 29 19 46
8 32 20 43
9 34 21 42
10 39 22 40
11 42 23 37
12 46 24 34

Find the total amount of energy in gigawatt-hours (gW-h)
consumed by the city in a typical 24-hour period.
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234. The average residential electrical power use (in
hundreds of watts) per hour is given in the following table.

Hour Power Hour Power
1 8 13 12
2 6 14 13
3 5 15 14
4 4 16 15
5 5 17 17
6 6 18 19
7 7 19 18
8 8 20 17
9 9 21 16
10 10 22 16
11 10 23 13
12 11 24 11

a. Compute the average total energy used in a day in
kilowatt-hours (kWh).

b. If a ton of coal generates 1842 kWh, how long does
it take for an average residence to burn a ton of
coal?

c. Explain why the data might fit a plot of the form

p()=115-175 sin(%).

577

235. The data in the following table are used to estimate
the average power output produced by Peter Sagan for each

of the last 18 sec of Stage 1 of the 2012 Tour de France.

Second Watts Second Watts
1 600 10 1200
2 500 11 1170
3 575 12 1125
4 1050 13 1100
5 925 14 1075
6 950 15 1000
7 1050 16 950
8 950 17 900
9 1100 18 780

Table 5.6 Average Power Output Source:
sportsexercisengineering.com

Estimate the net energy used in kilojoules (kJ), noting that
1W =1 J/s, and the average power output by Sagan during

this time interval.



578

236. The data in the following table are used to estimate
the average power output produced by Peter Sagan for each
15-min interval of Stage 1 of the 2012 Tour de France.

Minutes Watts Minutes Watts
15 200 165 170
30 180 180 220
45 190 195 140
60 230 210 225
75 240 225 170
90 210 240 210
105 210 255 200
120 220 270 220
135 210 285 250
150 150 300 400

Table 5.7 Average Power Output Source:
sportsexercisengineering.com

Estimate the net energy used in kilojoules, noting that 1W

=11Js.
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237. The distribution of incomes as of 2012 in the United
States in $5000 increments is given in the following table.
The kth row denotes the percentage of households with
incomes between $5000xk and 5000xk + 4999. The row
k =40 contains all households with income between
$200,000 and $250,000 and k =41 accounts for all
households with income exceeding $250,000.
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0 3.5 21 1.5
1 4.1 22 1.4
2 5.9 23 1.3
3 5.7 24 1.3
4 5.9 25 1.1
5 5.4 26 1.0
6 55 27 0.75
7 5.1 28 0.8
8 4.8 29 1.0
9 4.1 30 0.6
10 4.3 31 0.6
11 3.5 32 0.5
12 3.7 33 0.5
13 3.2 34 0.4
14 3.0 35 0.3
15 2.8 36 0.3
16 2.5 37 0.3
17 2.2 38 0.2
18 2.2 39 1.8

Table 5.8 Income

Distributions Source:

http:/lwww.census.gov/

prod/2013pubs/p60-245.pdf
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19 1.8 40 2.3

20 2.1 41

Table 5.8 Income
Distributions Source:
http:/lwww.census.gov/
prod/2013pubs/p60-245.pdf

a. Estimate the percentage of U.S. households in 2012
with incomes less than $55,000.

b. What percentage of households had incomes
exceeding $85,000?

c. Plot the data and try to fit its shape to that of a

graph of the form a(x + c)e_b(x+e) for suitable

a, b, c.

238. Newton’s law of gravity states that the gravitational
force exerted by an object of mass M and one of mass
m with centers that are separated by a distance r is

F= G%, with G an  empirical constant
r

G =6.67x10711 mS/(kg~s2). The work done by a

variable force over an interval |[a, b| is defined as

b
W= f F(x)dx. If Earth has mass 5.97219 x 10%* and
a

radius 6371 km, compute the amount of work to elevate
a polar weather satellite of mass 1400 kg to its orbiting
altitude of 850 km above Earth.

239. For a given motor vehicle, the maximum achievable
deceleration from braking is approximately 7 m/sec® on dry
concrete. On wet asphalt, it is approximately 2.5 m/sec?.
Given that 1 mph corresponds to 0.447 m/sec, find the total
distance that a car travels in meters on dry concrete after the
brakes are applied until it comes to a complete stop if the
initial velocity is 67 mph (30 m/sec) or if the initial braking
velocity is 56 mph (25 m/sec). Find the corresponding
distances if the surface is slippery wet asphalt.

240. John is a 25-year old man who weighs 160 lb. He
burns 500 — 507 calories/hr while riding his bike for ¢
hours. If an oatmeal cookie has 55 cal and John eats 4t
cookies during the tth hour, how many net calories has he
lost after 3 hours riding his bike?

241. Sandra is a 25-year old woman who weighs 120
Ib. She burns 300 — 507 cal/hr while walking on her
treadmill. Her caloric intake from drinking Gatorade is 100t
calories during the tth hour. What is her net decrease in
calories after walking for 3 hours?
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242. A motor vehicle has a maximum efficiency of 33
mpg at a cruising speed of 40 mph. The efficiency drops at
a rate of 0.1 mpg/mph between 40 mph and 50 mph, and at
a rate of 0.4 mpg/mph between 50 mph and 80 mph. What
is the efficiency in miles per gallon if the car is cruising at
50 mph? What is the efficiency in miles per gallon if the car
is cruising at 80 mph? If gasoline costs $3.50/gal, what is
the cost of fuel to drive 50 mi at 40 mph, at 50 mph, and at
80 mph?

243. Although some engines are more efficient at given
a horsepower than others, on average, fuel efficiency
decreases with horsepower at a rate of 1/25 mpg/
horsepower. If a typical 50-horsepower engine has an
average fuel efficiency of 32 mpg, what is the average fuel
efficiency of an engine with the following horsepower: 150,
300, 450?

244, [T] The following table lists the 2013 schedule of
federal income tax versus taxable income.

Chapter 5 | Integration

245. [T] The following table provides hypothetical data
regarding the level of service for a certain highway.

Highway Vehicles per Density
Range
Speed Range Hour per -
(mph) Lane (vehicles/
P mi)
> 60 <600 <10
60-57 600-1000 10-20
57-54 1000-1500 20-30
54-46 1500-1900 30-45
46-30 1900-2100 45-70
<30 Unstable 70-200
Table 5.10

a. Plot vehicles per hour per lane on the x-axis and
highway speed on the y-axis.

b. Compute the average decrease in speed (in miles
per hour) per unit increase in congestion (vehicles
per hour per lane) as the latter increases from 600 to
1000, from 1000 to 1500, and from 1500 to 2100.
Does the decrease in miles per hour depend linearly
on the increase in vehicles per hour per lane?

c. Plot minutes per mile (60 times the reciprocal of
miles per hour) as a function of vehicles per hour

Taxable Income The Tax Is - Of the
Range Amount
Over

$0-$8925 10% $0
$892.50 +

$8925-$36,250 15% $8925
$4,991.25 +

$36,250-$87,850 25% $36,250
$17,891.25

$87,850-$183,250 +28% $87,850
$44,603.25

$183,250-$398,350 +33% $183,250
$115,586.25

$398,350-$400,000 +35% $398,350
$116,163.75

> $400,000 +39.6% $400,000

Table 5.9 Federal Income Tax Versus Taxable
Income Source: http:/lwww.irs.govipublirs-prior/
i1040tt--2013.pdf.

Suppose that Steve just received a $10,000 raise. How
much of this raise is left after federal taxes if Steve’s salary
before receiving the raise was $40,000? If it was $90,000?
If it was $385,000?

per lane. Is this function linear?

For the next two exercises use the data in the following
table, which displays bald eagle populations from 1963 to
2000 in the continental United States.
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Population of Breeding Pairs of
Year
Bald Eagles
1963 487
1974 791
1981 1188
1986 1875
1992 3749
1996 5094
2000 6471

Table 5.11 Population of Breeding Bald Eagle
Pairs Source: http:/lwww.fws.gov/IMidwest/eagle/
population/chtofprs.html.

246. [T] The graph below plots the quadratic
p(t)=6.4812—80.3lt+585.69 against the data in

preceding table, normalized so that # = 0 corresponds to

1963. Estimate the average number of bald eagles per year
present for the 37 years by computing the average value of
pover [0, 37].

y
7000 1 (37, 6471)
6000 L
(33, 5094)

5000+
4000 + (29, 3749)
3000+
20004 (0 487) 4 (23, 1875)
10004/ (11791 415 1188)

L

0 5 10 15 20 25 30 35 40X
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247. [T] The graph below plots the cubic
p(t) = 0.071> +2.42t% — 25.631 + 521.23

data in the preceding table, normalized so that #=0

against the

corresponds to 1963. Estimate the average number of bald
eagles per year present for the 37 years by computing the
average value of p over [0, 37].

y
7000 +
(37, 6471)

6000 +

(33, 5094)
5000 +

4000 +
3000 +

2000+ (0, 487)

1000}/ (1731

'
t

0f 5 10 15 20 25 30 35 40X

248. [T] Suppose you go on a road trip and record your
speed at every half hour, as compiled in the following
table. The best quadratic fit to the data is

q(t) =5x* = 11x+49, shown in the accompanying

graph. Integrate g to estimate the total distance driven over
the 3 hours.

Time (hr) Speed (mph)

0 (start) 50

1 40

2 50

3 60

y
65+

3, 60

601 (3, 60)
55+
504 (0 50) (2.50),
451
404 ® (1, 40)

0 05 1 15 2 25 3%
As a car accelerates, it does not accelerate at a constant
rate; rather, the acceleration is variable. For the following
exercises, use the following table, which contains the

acceleration measured at every second as a driver merges
onto a freeway.
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Time (sec) Acceleration (mph/sec)
1 11.2

2 10.6

3 8.1

4 5.4

5 0

249. [T] The accompanying graph plots the best quadratic
fit, a(r) = —0.70¢2 + 1.44¢ + 10.44, to the data from the
preceding table. Compute the average value of a(f) to
estimate the average acceleration between 7=0 and
t=>5.

12}

10+

4 4
t

0 05 1 15 2 25 3 35 4 45 5X

250. [T] Using your acceleration equation from the
previous exercise, find the corresponding velocity
equation. Assuming the final velocity is 0 mph, find the
velocity at time ¢ = 0.

251. [T] Using your velocity equation from the previous
exercise, find the corresponding distance equation,
assuming your initial distance is 0 mi. How far did you
travel while you accelerated your car? (Hint: You will need
to convert time units.)
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252. [T] The number of hamburgers sold at a restaurant
throughout the day is given in the following table, with the
accompanying graph plotting the best cubic fit to the data,

b(r) = 0.126 =213 + 12.13r + 391, with =0
corresponding to 9 am. and ¢ = 12 corresponding to 9
p.m. Compute the average value of b(f) to estimate the

average number of hamburgers sold per hour.

Hours Past Midnight No. of Burgers Sold
9 3

12 28

15 20

18 30

21 45

4 4 4 .
t t t

8 10 12X
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253. [T] An athlete runs by a motion detector, which
records her speed, as displayed in the following table. The
best linear fit to this data, £(r) = —0.068¢ + 5.14, is

shown in the accompanying graph. Use the average value
of £(t) between t=0 and =40 to estimate the

runner’s average speed.

Minutes Speed (m/sec)
0 5
10 4.8
20 3.6
30 3.0
40 2.5

yi

55+
0,5)
54

354 (20,3.6)°
37 (30, 3)

(40, 2.5)

0 5 10 15 20 25 30 35 40X
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5.5 | Substitution

Learning Objectives

5.5.1 Use substitution to evaluate indefinite integrals.
5.5.2 Use substitution to evaluate definite integrals.

The Fundamental Theorem of Calculus gave us a method to evaluate integrals without using Riemann sums. The drawback
of this method, though, is that we must be able to find an antiderivative, and this is not always easy. In this section we
examine a technique, called integration by substitution, to help us find antiderivatives. Specifically, this method helps us
find antiderivatives when the integrand is the result of a chain-rule derivative.

At first, the approach to the substitution procedure may not appear very obvious. However, it is primarily a visual task—that
is, the integrand shows you what to do; it is a matter of recognizing the form of the function. So, what are we supposed to

3
see? We are looking for an integrand of the form f[g(x)]g’ (x)dx. For example, in the integral J(xz - 3) 2xdx, we have
f)=x% gx)=x>=3, and g'(x) =2x. Then,

3
feglg’ () = (x* = 3) (2x),

and we see that our integrand is in the correct form.

The method is called substitution because we substitute part of the integrand with the variable u and part of the integrand
with du. It is also referred to as change of variables because we are changing variables to obtain an expression that is easier
to work with for applying the integration rules.

Theorem 5.7: Substitution with Indefinite Integrals

Let u = g(x), , where g’ (x) is continuous over an interval, let f(x) be continuous over the corresponding range of

g, and let F(x) be an antiderivative of f(x). Then,

f fle@)lg' ()dx = / f(u)du (5.19)
=Fu)+C
= F(g(x)) + C.

Proof

Letf, g, u, and F be as specified in the theorem. Then
LFg) =F (sl @
= flgs’ (x).

Integrating both sides with respect to x, we see that

[ gl @dx = Flgw) + C.
If we now substitute u = g(x), and du = g'(x)dx, we get

f M@ dx = f fwdu

=Fu+C
= Flg(x))+ C.
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Returning to the problem we looked at originally, we let u = x%2 =3 and then du = 2xdx. Rewrite the integral in terms of

u:
3

(x*=3) Qudx) = [u’du.
——

u du

Using the power rule for integrals, we have

4
Ju3 du = MT +C.
Substitute the original expression for x back into the solution:
4
Lo i) I
4 4 ’

We can generalize the procedure in the following Problem-Solving Strategy.

Problem-Solving Strategy: Integration by Substitution

1. Look carefully at the integrand and select an expression g(x) within the integrand to set equal to u. Let’s select

g(x). such that g’ (x) is also part of the integrand.

2. Substitute u = g(x) and du = g’ (x)dx. into the integral.

3. We should now be able to evaluate the integral with respect to u. If the integral can’t be evaluated we need to

go back and select a different expression to use as u.
Evaluate the integral in terms of u.

Write the result in terms of x and the expression g(x).

Example 5.30

Using Substitution to Find an Antiderivative
2 4
Use substitution to find the antiderivative J6x(3x + 4) dx.

Solution

already have du in the integrand. Write the integral in terms of u:

J6x(3x2 + 4)4 dx = /u4du.

we can evaluate the integral with respect to u:

The first step is to choose an expression for u. We choose u = 3x% +4 because then du = 6xdx, and we

Remember that du is the derivative of the expression chosen for u, regardless of what is inside the integrand. Now
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Analysis
We can check our answer by taking the derivative of the result of integration. We should obtain the integrand.

e 1(.,2 3
Picking a value for C of 1, we let y = §(3x + 4) + 1. We have

y= %(3)8 + 4)5 +1,
SO

vo= (L) + 2)' 6x
= 6)6(3362 + 4)4.

This is exactly the expression we started with inside the integrand.

5.25 2
@ Use substitution to find the antiderivative J 3x2 (x3 - 3) dx.

Sometimes we need to adjust the constants in our integral if they don’t match up exactly with the expressions we are
substituting.

Example 5.31

Using Substitution with Alteration
Use substitution to find f Nz - 5dz.

Solution
2 172 2
Rewrite the integral as jz(z - 5) dz. Let u=z"—-5 and du = 2zdz. Now we have a problem because

du = 2zdz and the original expression has only zdz. We have to alter our expression for du or the integral in
1

u will be twice as large as it should be. If we multiply both sides of the du equation by 7+ Wecan solve this
problem. Thus,
u =z2-5
du =2zdz
Ly, =1 =
zdu = 2(2Z)dz zdz.
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Write the integral in terms of u, but pull the L outside the integration symbol:

2

Jz(z2 - 5)

1/2
_1f1n
dz = qu du.

Integrate the expression in u:

1,12 _(1\u3?
2/u du —(2 % +C

4R
“Lnic
32

=%(z2—5) +C.

5.26 9
@ Use substitution to find sz (x3 + 5) dx.

Example 5.32

Using Substitution with Integrals of Trigonometric Functions

Use substitution to evaluate the integral Jngdt.
cos”t
Solution
We know the derivative of cost is —sin#, so we set u = cost. Then du = —sintdt. Substituting into the
integral, we have
J sing_y, _ _J@
cos’t u’

Evaluating the integral, we get
_ldu _ _f,-3
Ju3 = f u>du

( S C.
Putting the answer back in terms of ¢, we get

sint g =1y c
Jcos3t 2u?

=—1—+c
2cos“t
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2

5.27 - :
@ Use substitution to evaluate the integral J?O—Stdt.
sin-t

Sometimes we need to manipulate an integral in ways that are more complicated than just multiplying or dividing by a
constant. We need to eliminate all the expressions within the integrand that are in terms of the original variable. When we
are done, u should be the only variable in the integrand. In some cases, this means solving for the original variable in terms
of u. This technique should become clear in the next example.

Example 5.33

Finding an Antiderivative Using u-Substitution

Use substitution to find the antiderivative / Vx—ldx.
e —

Solution
If we let u=x—1, then du = dx. But this does not account for the x in the numerator of the integrand. We

need to express x in terms of u. If ¥ = x — 1, then x = u + 1. Now we can rewrite the integral in terms of u:

= /W+ %du
- f(u 172 + u—l/Z)du.

Then we integrate in the usual way, replace u with the original expression, and factor and simplify the result.
Thus,

172 -1/2 _ 232 172
f(u +u )du =3u +2u’“+C
=2x-DP+26-D"+C

=(x— 1)”2[%@— 1)+2]+c

=(x— 1)1/2(2x_l+§)

3¥ 7343
== D" (2x+4)

=%(x— D2 (x+2)+C.

@ 5.28  yse substitution to evaluate the indefinite integral f cos tsint dt.

Substitution for Definite Integrals

Substitution can be used with definite integrals, too. However, using substitution to evaluate a definite integral requires a
change to the limits of integration. If we change variables in the integrand, the limits of integration change as well.
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Theorem 5.8: Substitution with Definite Integrals

Let u = g(x) and let g’ be continuous over an interval [a, b], and let f be continuous over the range of u = g(x).
Then,

8(b)

b
J flg))g’ (x)dx = fwdu.

g(a)

Although we will not formally prove this theorem, we justify it with some calculations here. From the substitution rule for
indefinite integrals, if F(x) is an antiderivative of f(x), we have

[ Flet0le’ (0dx = Flg(x))+ C.
Then

b _p (5.20)
/a flele’ Wdx = Flg()i=5

= Flg(b)) - Flg(a))

=g(b
= FWl, o

g(b)
= [ fudu,

gla)

and we have the desired result.

Example 5.34

Using Substitution to Evaluate a Definite Integral

: 2 3 3
Use substitution to evaluate | x (1 + 2x‘) dx.
0

Solution

Let u=1+2x> , so du= 6x2dx. Since the original function includes one factor of x? and du = 6x2 dx,
multiply both sides of the du equation by 1/6. Then,

du = 6x°dx
1, _ .2
6du x“dx.

To adjust the limits of integration, note that when x=0,u=1+20)=1, and when
x=1,u=1+2(1) =3. Then

1 5 3
J 22(1+2x%) dx =%/ u du.
0 1

Evaluating this expression, we get
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5.29 0 5
@ Use substitution to evaluate the definite integral J y(Zy2 - 3) dy.
-1

Example 5.35

Using Substitution with an Exponential Function

1 2
Use substitution to evaluate f xe¥ 3 4y,
0

Solution

Let u = 4x> +3. Then, du = 8xdx. To adjust the limits of integration, we note that when x =0, u =3, and

when x =1, u = 7. So our substitution gives

1 2 7
f xe™ T3 dx =l/ e'du
0 8 3

7

eu

1
8 3
:€7—€3

~ 134.568.

5.30 o 1, 7.3
Use substitution to evaluate I X cos(fx )dx.
0
Substitution may be only one of the techniques needed to evaluate a definite integral. All of the properties and rules of
integration apply independently, and trigonometric functions may need to be rewritten using a trigonometric identity before
we can apply substitution. Also, we have the option of replacing the original expression for u after we find the antiderivative,

which means that we do not have to change the limits of integration. These two approaches are shown in Example 5.36.

Example 5.36
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Chapter 5 | Integration

Using Substitution to Evaluate a Trigonometric Integral

72

Use substitution to evaluate / cos26do.
0

Solution

1 + cos20
2

Let us first use a trigonometric identity to rewrite the integral. The trig identity cos?6 = allows us

to rewrite the integral as

foﬂ/zcos2 o J:/2 1+c_20529d9,
Then,
[0 - [ (b4 Jeos2op

/2 /2
_1/" 1
_24 w+24 €0s20d0.

We can evaluate the first integral as it is, but we need to make a substitution to evaluate the second integral. Let

u = 20. Then, du = 2d6, or %du =d6. Also, when 0 =0, u =0, and when 8 = n/2, u = n. Expressing

the second integral in terms of u, we have

w2 /2 /2 n
1 1 1 1(1
2L)w+24 mﬂ%6—2L¢w+JﬁﬂmeM

0=nl2 1 u=40
| +Zsinu
0=0

D

=0

<

—

Z_0)+0-0==

591
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5.5 EXERCISES

254. Why is u-substitution referred to as change of
variable?

255. 2. If f=goh, when reversing the chain rule,
%(goh)(x) = g’ (h(x))h’ (x), should you take u = g(x)

or u = h(x)?

In the following exercises, verify each identity using
differentiation. Then, using the indicated u-substitution,

identify f such that the integral takes the form / fwdu.

256.
fxvx+ Tdx =%(x+ D@y +Ciu=x+1

257. For
x2 2 2
x>1: dx=EVx—1(3x +4x+8)+C;u=x—l

Vx—1

258.
372
[xV4x2 +9dx = {47 +9) + Clu=4x+9

259. #lev4x2+9+c;u=4x2+9
JV4x2+9 4

X __dx= 1
J(4x2 +9)?

In the following exercises, find the antiderivative using the
indicated substitution.

cu=4x*+9

260 ——;
8(4x“+9)

261. /(x+1)4dx;u=x+1
262. /(x—l)sdx;u=x—1
263. /(Zx —3)Tdx;u=2x-3

264, f(3x—2)-”dx; u=3x—-2

dx;u=x2+1

265. X
J\/x2 +1

266. J\/X—dx;uzl—x2
1-x2

Chapter 5 | Integration

267. J(x — 1)()62 - 2x)3 dx,u= x2—2x
268. J(xz - 2x)(x3 - 3x2)2 dx; u = ¥ - 322

269. /cos3éd9; u = sinf (Hint: cos2f=1- sin26’)

270. /sin39d6; u=cosf (Hint: sinZf=1- coszﬁ)

In the following exercises, use a suitable change of
variables to determine the indefinite integral.

271, [x(1—x)®dx

272. Jt(l—tz)lodt

273 [(11x =7 dx

274, [(x—11)*dx

275. [ cos*Osin0do

276. [sin” 9cos0do

277 [cos? (at)sin(mr)dt

278, [sin®xcos®xdx (Hint: sinx +cos®x = 1)
279, [rsin(Pos(i?)s

280. [ 1%cos?(r*)sin(e’ dt

281. | —X——dx

282.
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283. |—X——ay

99
284, /cose(l—cosa) sinfdo

285. f(l - cosBG)locoszesinedG

3
286. J(cos@ — 1)(c0529 — 20056) sinfd6

287. J(sin2 0 — 2sin6)(sin” 6 — 3sin’ .9)3 cos0do

In the following exercises, use a calculator to estimate the
area under the curve using left Riemann sums with 50
terms, then use substitution to solve for the exact answer.

288. [T] y =3(1 —x)? over [0, 2]
3
289. [T] y=x(1 —x%) over [-1,2]

290. [T] y = sinx(1 — cosx)2 over [0, ]

291. [Tl y=—2—

( X )2 over [—1, 1]
x“+1

In the following exercises, use a change of variables to
evaluate the definite integral.

1
292. /xvl—xzdx
0

1

293, X Jx
J OVI +x2
2 5

294, vt_zdt
Jo S5+t
ol )

295, v[_3dt
Jo 1+4+1¢

/4
296. / sec2Otanfdo
0

593

/4 .
297. J -sinfd g
o cos”0

In the following exercises, evaluate the indefinite integral
/ f()dx with constant C =0 using u-substitution.

Then, graph the function and the antiderivative over the
indicated interval. If possible, estimate a value of C that
would need to be added to the antiderivative to make it

X
equal to the definite integral F(x) = f f(®dt, with athe
a

left endpoint of the given interval.

2
298. [T] f Qx4+ De® T¥7%4x over [-3, 2]

200. (1] [Ny on [0, 2)

2
300. [T] J‘\/%dx over [-1, 2]
S+l x+4

sinx Iz
301. [T] Los3xdx over [ 3> 3]

2
302. [T] f(x+2)e_x ~4+3 gx over [=5, 1]

303. [T] f3x2 V2x3 + 1dx over [0, 1]

b

304. If h(a) = h(b) in f g'(h(x))h(x)dx, what can you
a

say about the value of the integral?

305. Is the substitution u = 1 — x2 in the definite integral
2

J *—dx okay? If not, why not?
0

1—x

In the following exercises, use a change of variables to
show that each definite integral is equal to zero.

/4
306. f cos2 (20)sin(20)do
0

307. f ﬁtcos(tz)sin(tz)dt
0

1
308. / (1 =20dt
0



594

ol

309. | —1=2t 4

7T

310. sin((t - %)jcos(t - %)dz

°0

2
311, f (1 = cos(zt)dt
0

3r/4 )
312. / sin“tcostdt
nl4

313. Show that the average value of f(x) over an interval

la, b] is the same as the average value of f(cx) over the

interval [%, %] for ¢ > 0.

314. Find the area under the graph of f(¢) = %
(1+1%)
between t=0 and t=x where a>0 and a#1 is

fixed, and evaluate the limit as x — oo.

(-

between t =0 and t =x, where 0<x<1 and a >0

315. Find the area under the graph of g(¢) =

is fixed. Evaluate the limit as x — 1.

316. The area of a semicircle of radius 1 can be expressed

1
as f V1 — x2dx. Use the substitution x = cost to
-1

express the area of a semicircle as the integral of a
trigonometric function. You do not need to compute the
integral.

317. The area of the top half of an ellipse with a major
axis that is the x-axis from x = a to a and with a minor

axis that is the y-axis from y = —b to b can be written

a
2
as J b 1—x—2dx. Use the substitution x = acost to
a
—a

express this area in terms of an integral of a trigonometric
function. You do not need to compute the integral.
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318. [T] The following graph is of a function of the form
f(®) = asin(nt) + bsin(mt). Estimate the coefficients a

and b, and the frequency parameters n and m. Use these

T
estimates to approximate / f()dr.
0

y

3+

24

N N\

0 t it }
L 7r T v 3w \7Tm X
— \— T —_— w

=1 4 \2 [a 4 2 \4

-2+

-3+

319. [T] The following graph is of a function of the form
f(x) = acos(nt) + bcos(imt). Estimate the coefficients a

and b and the frequency parameters n and m. Use these

T
estimates to approximate f f(®dz.
0

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



Chapter 5 | Integration 595

5.6 | Integrals Involving Exponential and Logarithmic
Functions

Learning Objectives

5.6.1 Integrate functions involving exponential functions.
5.6.2 Integrate functions involving logarithmic functions.

Exponential and logarithmic functions are used to model population growth, cell growth, and financial growth, as well as
depreciation, radioactive decay, and resource consumption, to name only a few applications. In this section, we explore
integration involving exponential and logarithmic functions.

Integrals of Exponential Functions

The exponential function is perhaps the most efficient function in terms of the operations of calculus. The exponential
function, y = e*, is its own derivative and its own integral.

Rule: Integrals of Exponential Functions

Exponential functions can be integrated using the following formulas.

/exdx = ¢+ C (5.21)
/axdx - <, c
Ina

Example 5.37

Finding an Antiderivative of an Exponential Function

Find the antiderivative of the exponential function e™.

Solution

Use substitution, setting u = —x, and then du = —1dx. Multiply the du equation by -1, so you now have

—du = dx. Then,
/e_xdx = —fe”du

=-e"+C
=—e"+C.

531 _. o . . S 2 —2x3
Find the antiderivative of the function using substitution: x“e .

A common mistake when dealing with exponential expressions is treating the exponent on e the same way we treat
exponents in polynomial expressions. We cannot use the power rule for the exponent on e. This can be especially confusing
when we have both exponentials and polynomials in the same expression, as in the previous checkpoint. In these cases, we
should always double-check to make sure we’re using the right rules for the functions we’re integrating.
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Example 5.38

Square Root of an Exponential Function

Find the antiderivative of the exponential function e*V1 + e*.

Solution

First rewrite the problem using a rational exponent:
[eriT+efax= [er(1+e9ax.
Using substitution, choose u = 1+ e¢*.u = 1 + e*. Then, du = e*dx. We have (Figure 5.37)

/ex(l +e2dx = fu”zdu.

Then
U2 du =ﬁ+ C=25324c=2014+¢9"4C
3/2 3 3 .
y

3__

24

f(x) = eiiy_

f _é t 0 - é + =
_1__

Figure 5.37 The graph shows an exponential function times
the square root of an exponential function.

@ 5.32  Find the antiderivative of ¢*(3e* — 2)2.

Example 5.39

Using Substitution with an Exponential Function
I . N 2 2)(3
Use substitution to evaluate the indefinite integral f 3x“e™" dx.

Solution

Here we choose to let u equal the expression in the exponent on e. Let u = 2% and du = 6x2dx.. Again, du

is off by a constant multiplier; the original function contains a factor of 3x%, not 6x°. Multiply both sides of the
1

equation by 5 S0 that the integrand in u equals the integrand in x. Thus,

/3x262x3dx = %fe“du.
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Integrate the expression in u and then substitute the original expression in x back into the u integral:

1 ug, 1 u _l2x3
2/6 du—ze +C—2e +C.

4
@ 5.33 Evaluate the indefinite integral f 2x3e* dx.

As mentioned at the beginning of this section, exponential functions are used in many real-life applications. The number e is
often associated with compounded or accelerating growth, as we have seen in earlier sections about the derivative. Although
the derivative represents a rate of change or a growth rate, the integral represents the total change or the total growth. Let’s
look at an example in which integration of an exponential function solves a common business application.

A price—demand function tells us the relationship between the quantity of a product demanded and the price of the product.
In general, price decreases as quantity demanded increases. The marginal price—demand function is the derivative of the
price—demand function and it tells us how fast the price changes at a given level of production. These functions are used in
business to determine the price—elasticity of demand, and to help companies determine whether changing production levels
would be profitable.

Example 5.40

Finding a Price-Demand Equation

Find the price—-demand equation for a particular brand of toothpaste at a supermarket chain when the demand is
50 tubes per week at $2.35 per tube, given that the marginal price—demand function, p’(x), for x number of

tubes per week, is given as
p'(x) = —0.015¢001x,

If the supermarket chain sells 100 tubes per week, what price should it set?

Solution

To find the price—demand equation, integrate the marginal price—demand function. First find the antiderivative,
then look at the particulars. Thus,

p(x) = f —0.015¢7001x g

=-0.015 / ¢ 00y

Using substitution, let ¥ = —0.01x and du = —0.01dx. Then, divide both sides of the du equation by —0.01.

This gives
=0.015 [ u = u
—001J°¢ du —1.5/6 du
=15¢"+C
=157 C.

The next step is to solve for C. We know that when the price is $2.35 per tube, the demand is 50 tubes per week.
This means
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p(50) = 1570010

=2.35.

C

Now, just solve for C:

C =235-15¢793
=235-091
= 1.44.

Thus,
p(x) = 1.5¢7001x 4 1 44,
If the supermarket sells 100 tubes of toothpaste per week, the price would be

—0.01(100
e (100)

p(100) = 1.5 +144=15¢""+1.44 ~ 1.99.

The supermarket should charge $1.99 per tube if it is selling 100 tubes per week.

Example 5.41

Evaluating a Definite Integral Involving an Exponential Function
2

Evaluate the definite integral f e! " ¥dx.
1

Solution

Again, substitution is the method to use. Let u=1-x, so du=—-1ldx or —du=dx. Then

/ e "Fdx=-— / e"du. Next, change the limits of integration. Using the equation # = 1 — x, we have

u=1-(1)=0
u=1-@2)=-1.

The integral then becomes

flzel_xdx = —fo_le“du
= fole”du

=e",
= ()
=— 141

See Figure 5.38.
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Figure 5.38 The indicated area can be calculated by
evaluating a definite integral using substitution.

5.34 2
@ Evaluate / e dx.
0
Example 5.42

Growth of Bacteria in a Culture

Suppose the rate of growth of bacteria in a Petri dish is given by ¢(f) = 3/, where t is given in hours and g(r)
is given in thousands of bacteria per hour. If a culture starts with 10,000 bacteria, find a function Q(¢) that gives

the number of bacteria in the Petri dish at any time t. How many bacteria are in the dish after 2 hours?

Solution
We have

= [yt g = 3"
o) = J3 =35+

Then, at t =0 we have Q(0) =10 = ﬁ +C, so C~9.090 and we get

_ 3!
o) = 3 +9.090.
Attime ¢t =2, we have
_ 32
02) = 3 +9.090

=17.282.

After 2 hours, there are 17,282 bacteria in the dish.

5.35 From Example 5.42, suppose the bacteria grow at a rate of g(f) = 2’. Assume the culture still starts
with 10,000 bacteria. Find Q(f). How many bacteria are in the dish after 3 hours?
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Example 5.43

Fruit Fly Population Growth

0.02¢
b

Suppose a population of fruit flies increases at a rate of g(7) = 2e in flies per day. If the initial population

of fruit flies is 100 flies, how many flies are in the population after 10 days?

Solution

Let G(#) represent the number of flies in the population at time t. Applying the net change theorem, we have

10
G(10) = G(0) + f 260021 gt
0

= 100+ 25e0%],
= 100 +[100¢*%¥] (1)0

= 100 + 100¢%2 — 100
~ 122.

There are 122 flies in the population after 10 days.

0.01¢

5.36  Suppose the rate of growth of the fly population is given by g(r) = ¢*!, and the initial fly population

is 100 flies. How many flies are in the population after 15 days?

Example 5.44

Evaluating a Definite Integral Using Substitution

2

Evaluate the definite integral using substitution: J e—zdx.
X

Solution

This problem requires some rewriting to simplify applying the properties. First, rewrite the exponent on e as a
power of x, then bring the x? in the denominator up to the numerator using a negative exponent. We have

2
1/x 2
Jezdx=fex x 2 dx.
1
1

X

Let u= x_l, the exponent on e. Then

du =—-x"2dx
—du =x"%dx.

Bringing the negative sign outside the integral sign, the problem now reads
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Next, change the limits of integration:

Notice that now the limits begin with the larger number, meaning we must multiply by —1 and interchange the
limits. Thus,

172 1
—/ e'du = / e"du
1 172
_ Lull
ALY
—e_ el
=e—Ve.
@ 5.37 2 )
Evaluate the definite integral using substitution: [ %64)‘ dx.
X

Integrals Involving Logarithmic Functions

Integrating functions of the form f(x) = x~! result in the absolute value of the natural log function, as shown in the
following rule. Integral formulas for other logarithmic functions, such as f(x) = Inx and f(x) = log,x, are also included

in the rule.

Rule: Integration Formulas Involving Logarithmic Functions

The following formulas can be used to evaluate integrals involving logarithmic functions.
[xlax = i+ C (5.22)

xInx—x+C=x(Inx-1)+C

E
=)
=
Sy
Il

o
o
()
Q
=
&
Il

X —
lna(lnx H+C

Example 5.45

Finding an Antiderivative Involving Inx

3
- 10°

Find the antiderivative of the function P
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Solution
First factor the 3 outside the integral symbol. Then use the u™" rule. Thus,

3 _ 1
Jx— 0% = 3Ix— o
_~fd
_3/714
= 3lnlul + C
=3Inlx — 10[ + C, x % 10.

See Figure 5.39.

[S=h S

(=]

4t 3
) = 1o

-1 U\e'o 20 30X

Figure 5.39 The domain of this function is x # 10.

@ 5.38  Rind the antiderivative of ——.
x+2

Example 5.46

Finding an Antiderivative of a Rational Function

£ 2x3+3x

4

Find the antiderivative o 5
x*+3x

Solution

-1
This can be rewritten as J(2x3 + 3x)(x4 + 3x2) dx. Use substitution. Let u=x*+ 3x2, then
du = 4x> + 6x. Alter du by factoring out the 2. Thus,

du (4x3 + 6x)dx
2(2x3 + 3x)dx

%du = (Zx3 + 3x)dx.

Rewrite the integrand in u:
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J(2x3 + 3x)(x4 + 3x2)_1 dx = %/u_ldu.

Then we have

1/,-1 -1
2/u du —2ln|u|+C

= %ln|x4 + 3x2| +C.

Example 5.47

Finding an Antiderivative of a Logarithmic Function

Find the antiderivative of the log function log, x.

Solution

Follow the format in the formula listed in the rule on integration formulas involving logarithmic functions. Based
on this format, we have

=X —
/logzxdx = 1112(lnx 1)+ C.

@ 5.39 Find the antiderivative of log;x.

Example 5.48 is a definite integral of a trigonometric function. With trigonometric functions, we often have to apply a
trigonometric property or an identity before we can move forward. Finding the right form of the integrand is usually the key
to a smooth integration.

Example 5.48

Evaluating a Definite Integral

/2

Find the definite integral of [ _sinx__g,
o l+cosx

Solution
We need substitution to evaluate this problem. Let u = 1 + cosx, , so du = —sinx dx. Rewrite the integral in
terms of u, changing the limits of integration as well. Thus,

u=1+cos(0)=2

u=1 +cos(%)= 1.
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Then
/2 . 1
sinx __ -1
JO 1+ cosx /2 ™ du
2
= / utdu
1
= lnlullf
=[In2 —1Inl1]
=1In2.
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5.6 EXERCISES

In the following exercises, compute each indefinite
integral.

320, [e¥dx
321, [edx
322 [2%x
323 [37dx
324, [Lax
325, [%dx
326. Jﬁdx
327 [Lax

In the following exercises, find each indefinite integral by
using appropriate substitutions.

328, [Wxax

329. J dx_
x(Inx)

dx
330. Jxlnx x> 1)

dx
331. Lclnxln(lnx)

332, / tan do

COSX — xsinx
333, [Cosroxsinxgy

334. J—ln(smx)dx
tanx

335. / In(cos x)tan xdx

2
336. /xe_x dx

605

3
337. x2e ™ dx
338. f S cos xdx
339. / €™ ¥sec? xdx

340. f e dx

In(1 -1
341. |&—dt
1—1

In the following exercises, verify by differentiation that

/ Inxdx = x(Inx — 1) + C, then use appropriate

changes of variables to compute the integral.

342. / Inxdx (Hint: [lnxdx = % xln(xZ)dx)
343. /lenzx dx
344, Jln—zxdx (Hint: Setu = %.)

X

345, f mT;dx (Hint: Set u = Vx.)

346. Write an integral to express the area under the graph

of y= % from ¢ =1 to e* and evaluate the integral.

347. Write an integral to express the area under the graph
of y= e’ between =0 and ¢t =Inx, and evaluate the

integral.
In the following exercises, use appropriate substitutions

to express the trigonometric integrals in terms of
compositions with logarithms.

348. / tan(2x)dx

Jsin(S‘x) — c0s(3x)
sin(3x) + cos(3x)

s (2
350. J&(x)dx

COS(XZ)

351. fxcsc(xz)dx
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/ In(cos x)tanx dx

353. / In(csc x)cot xdx

354, Jde

et +e ™"

In the following exercises, evaluate the definite integral.
2
355. J de
3x+3x2 41

/4
356. / tanx dx
0

al3 .
357. [ SILX — COSX
0 sinx + Cosx

/2
358. / cscxdx
/6

/3
cotxdx

359. /

/4

In the following exercises, integrate using the indicated
substitution.

360. / 1Oodx; u=x-—100

361. Jy+1dy,u—y+1

2
362. Jl_x3dx;u=3x—x3
3x—x

363. dex i = Sinx — COSXx
sinx — cosx

364. feb‘vl — ey, u = e
365. Jln( )—V(lnx)

dx; u=1Inx

In the following exercises, does the right-endpoint
approximation overestimate or underestimate the exact
area? Calculate the right endpoint estimate Rsy and solve
for the exact area.

366. [T] y =e* over [0, 1]

367. [Tl y=¢~" over [0, 1]

Chapter 5 | Integration

368. [T] y = In(x) over [1, 2]
369. [T] y= ZX;I over [0, 1]
xX“+2x+6

370. [T] y =2" over [-1, 0]

371. [T] y= -2 over [0, 1]

In the following exercises, f(x) > 0 for a < x < b. Find
the area under the graph of f(x) between the given values

a and b by integrating.

log Log 1o () (x)

372. fx) = =10, b =100

10g2 (x)

373. f)=—33""%,a=32,b=064

374. fx)=2"%a=1,b=2

375. f(x)=2"%a=3,b=4

376. Find the area under the graph of the function

2
f(x) =xe ™™ between x =0 and x = 5.

2
377. Compute the integral of f(x) = xe™™ and find the
smallest value of N such that the area under the graph

2
f) =xe™*
most, 0.01.

between x =N and x=N+1 is, at

378. Find the limit, as N tends to infinity, of the area under

2
the graph of f(x) = xe™" between x =0 and x = 5.

1/a

ﬂwhen 0<a<hb.

b
379. Show that f di - L
a

1/b
380. Suppose that f(x) > 0 for all x and that f and g are

ghnf

differentiable. Use the identity f€ =¢ and the chain

rule to find the derivative of f$.

381. Use the previous exercise to find the antiderivative of

3
h(x) = x*(1 + Inx) and evaluate f (1 + Inx)dx.
2

382. Show that if ¢ > 0, then the integral of 1/x from
ac to bc (0 < a < b) is the same as the integral of 1/x
from a to b.

The following exercises are intended to derive the
fundamental properties of the natural log starting from the
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dt

definition In(x) = <> using properties of the definite
1

integral and making no further assumptions.

X
383. Use the identity In(x) = f % to derive the identity
1

ln(%) = —Inx.

xy
384. Use a change of variable in the integral / %dt to
1

show that Inxy = Inx + Iny for x, y > 0.

d
385. Use the identity Inx = / 7’ to show that In(x)
1

is an increasing function of x on [0, o), and use the
previous exercises to show that the range of In(x) is
(—o0, o0). Without any further assumptions, conclude that

In(x) has an inverse function defined on (—o0, ).

386. Pretend, for the moment, that we do not know that

e is the inverse function of In(x), but keep in mind
that In(x) has an inverse function defined on (—o0, 00).
Call it E. Use the identity Inxy = Inx + Iny to deduce that

E(a + b) = E(a)E(b) for any real numbers a, b.

387. Pretend, for the moment, that we do not know that
e” is the inverse function of Inx, but keep in mind that

Inx has an inverse function defined on (—o0, oo). Call it
E. Show that E'(t) = E(1).

X .
388. The sine integral, defined as S(x) = / %mdt is
0

an important quantity in engineering. Although it does not
have a simple closed formula, it is possible to estimate
its  behavior for large x. Show that for

1
k2 1, 1SQak) = S@atk + D < 77—y

(Hint: sin(t + ) = —sinf)

389. [T] The normal distribution in probability is given
L, ~a-w?ne’

by p(x) = m ,

where ¢ is the standard
deviation and p is the average. The standard normal
distribution in probability, py, corresponds  to

u=0ando = 1. Compute the right endpoint estimates

1
R,nand R, of J L i dx.
10 100 . m

607
390. [T] Compute the right endpoint estimates
5
2
Rsy and R of L =D
50 100 J_32m
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5.7 | Integrals Resulting in Inverse Trigonometric
Functions

Learning Objectives

5.7.1 Integrate functions resulting in inverse trigonometric functions

In this section we focus on integrals that result in inverse trigonometric functions. We have worked with these functions
before. Recall from Functions and Graphs that trigonometric functions are not one-to-one unless the domains are
restricted. When working with inverses of trigonometric functions, we always need to be careful to take these restrictions
into account. Also in Derivatives, we developed formulas for derivatives of inverse trigonometric functions. The formulas
developed there give rise directly to integration formulas involving inverse trigonometric functions.

Integrals that Result in Inverse Sine Functions

Let us begin this last section of the chapter with the three formulas. Along with these formulas, we use substitution to
evaluate the integrals. We prove the formula for the inverse sine integral.

Rule: Integration Formulas Resulting in Inverse Trigonometric Functions

The following integration formulas yield inverse trigonometric functions:

1.
5.23
J du _ s1n—ll7u|+ c ( )

a?—u?

2.

du 1, .—1u (5.24)
=—tan” -+ C

3.
5.25
—du  _ 1-lu o (5:29)

W2 _g2 lal
Proof

Let y = sin~! %. Then asiny = x. Now let’s use implicit differentiation. We obtain

A (4si - d
S lasiny) = —=(x)
acosy% =1
dy _ 1
dx acosy:

For —% <y<Z,cosy>0. Thus, applying the Pythagorean identity sinzy + coszy =1, we have

p4
>
2y.

cosy = |1 — sin“y. This gives
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1 _ 1
acosy a\/l —sin’y
— 1
a’®-a? sin2y
— —l .
a*—x?

Then for —a < x < a, and generalizing to u, we have
1 — o=l
Jﬁdu = Sin (E) + C.
a“—u

O

Example 5.49

Evaluating a Definite Integral Using Inverse Trigonometric Functions

dx

Evaluate the definite integral J >

0 1—x

Solution

We can go directly to the formula for the antiderivative in the rule on integration formulas resulting in inverse
trigonometric functions, and then evaluate the definite integral. We have

: :
J dx 12

0\/1—x2 0
= sin_l%—sin_10
- _
=% 0
.y 4
6

5.40 d
Find the antiderivative of |—%X—.
V1 - 16x2
Example 5.50
Finding an Antiderivative Involving an Inverse Trigonometric Function

Evaluate the integral J dx

V4 — 9x2'
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Solution
Substitute u# = 3x. Then du = 3dx and we have

J dx =ll du__
Va—ox2 3JVa—u?

Applying the formula with @ =2, we obtain

J dx =lJ du
Va—ox2  3JVa—u?

_ 1 —1(u
= 3sin —2)+C
=Lgn-1(3x
—3s1n > + C.

5.41
@ Find the indefinite integral using an inverse trigonometric function and substitution for =
9—x

Example 5.51

Evaluating a Definite Integral

V372
Evaluate the definite integral J Lz

1—u
0

Solution

The format of the problem matches the inverse sine formula. Thus,

132 V372
J du _ _ gjp~! u|
o V1-— u? 0
= [sm_1 (\/75)] - [SIII ! (0)]

Integrals Resulting in Other Inverse Trigonometric Functions

There are six inverse trigonometric functions. However, only three integration formulas are noted in the rule on integration
formulas resulting in inverse trigonometric functions because the remaining three are negative versions of the ones we use.
The only difference is whether the integrand is positive or negative. Rather than memorizing three more formulas, if the
integrand is negative, simply factor out —1 and evaluate the integral using one of the formulas already provided. To close
this section, we examine one more formula: the integral resulting in the inverse tangent function.
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Example 5.52

Finding an Antiderivative Involving the Inverse Tangent Function

Find an antiderivative of J 1 2abc.
1+4x

Solution

Comparing this problem with the formulas stated in the rule on integration formulas resulting in inverse
trigonometric functions, the integrand looks similar to the formula for tan"'u + C. So we use substitution,
letting u = 2x, then du = 2dx and 1/2du = dx. Then, we have

1 1 _ 1.1 _ 1. -1
2J1+u2du—2tan u+C 2tan 2x)+C.

5.42
@ Use substitution to find the antiderivative J‘Lz
25+ 4x

Example 5.53

Applying the Integration Formulas

Find the antiderivative of J 1 2dx.
9+ x

Solution
Apply the formula with a = 3. Then,

Jﬁ = %tan_1 (i) +C.

4
@ 543 Find the antiderivative of J dx 5
16 + x

Example 5.54

Evaluating a Definite Integral

3
dx

Evaluate the definite integral J 7
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Solution
Use the formula for the inverse tangent. We have
B B
3
[ Lz =tan~! x|
Gl tx V373
= [tan™ (V3)] - [tan_1 (\/Tg)]
.y 4
6
@ 5.44 2
Evaluate the definite integral I dx 7
od+x
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5.7 EXERCISES

In the following exercises, evaluate each integral in terms
of an inverse trigonometric function.

312
391. _dx
Jo 1—x2
172
392. —dx _
Ioipl—x
1
393, | —dx_
J vgl -X
3
394, —dx
J l/\/gl +x
2
dx
395. —
J, le\/x2 -1
213
396. —dx
|x| 21

1

In the following exercises, find each indefinite integral,
using appropriate substitutions.

397. dx

398. dx

399. |—x
9+ x
400. |—dx
25 + 16x
401.

dx
JixVx2 -9

402.

dx
JiVax2 - 16

613

403. Explain the relationship
—cos~lt+C= J dr _ sin~lr+C. Is it true, in
1—1t
general, that cos 1t =—sin"1¢?2
404. Explain the relationship
sec™lt+C= _dr __ —cscTl i+ C. Is it true, in
11\ — 1

1

general, that sec™ ¢t = —cse 112

405. Explain what is wrong with the following integral:
2

J de_
N1—22

406. Explain what is wrong with the following integral:
1

d
J V=1

In the following exercises, solve for the antiderivative f f

of f with C =0,

the antiderivative over the given interval [a, b]. Identify a

then use a calculator to graph f and

value of C such that adding C to the antiderivative recovers

X
the definite integral F(x) = / F(t)dt.
a

1

407. [T] ———x over [-3, 3]
JVo — 42

408. [T] 9 2dx over [—6, 6]
JO+x

409. [T] [—S98X_dx over [-6, 6]
4 +sin“x
[ g

410. [T] 4 5-dx over [~6, 6]
J1+e™*

In the following exercises, compute the antiderivative using
appropriate substitutions.

411. JS]H_I tdt

V1 —¢2

dt
412. _—
Jsin_1 A1 — 2
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[tan—! (21) "

413.
1 + 412

[1tan~" (1?)

414. dt

1+14

415. n&1(%)dt
4

JiaVe? -

‘tsec_1 (12)

t
2Vt -1

416.

In the following exercises, use a calculator to graph the

antiderivative / f with C =0 over the given interval

la, b]. Approximate a value of C, if possible, such that

adding C to the antiderivative gives the same value as the

X
definite integral F(x) = f f(dr.
a

417. [T] J—l—dx over [2, 6]
Kx? -4

1

418. [T] J(2x+ 2)ﬁdx over [0, 6]

419. [T] de over [—6, 6]

1+ x“sin“x

[ 26—2)6

420. [T] |—=E&&——=dx over [0, 2]
JV =

421. [T] % over [0, 2]
Jx+ xIn“x

422, [T] [S—X gver [—1, 1]
JV1 =2

In the following exercises, compute each integral using
appropriate substitutions.

[ t
423. | —=—dt
JV1 =™
[ t
424, 4 5.dt
J1+e?
[ @
425 |—4L—
JAV1 = 1n?¢

Chapter 5 | Integration

dt
426. ] t(l + ln2t)

(1
a7 |0 @D

J V1 —as?

(t —1( .t
ss, |4 (€,
] 1— 821

In the following exercises, compute each definite integral.

~1/2
tan(sin_1 t)
429. ﬁdt
J 1—1
~1/2
tan(cos_1 t)
Sy -t
~1/2
sin(tan_l t)
431. —2dt
1+¢
172
cos(tan'1 t)
432. —zdl‘
1+1¢
A
433. For A>0, compute I(A)= J % and
_al+t
: 1
evaluate aILmWI (A), the area under the graph of Py

on [—oo, oo].

B
434. For 1 < B < o0, compute /(B) = J —dt and

2 =1

evaluate Blim I(B), the area under the graph of
— 0

1

A2 -1

435. Use the substitution u = V2 cotx and the identity

over [1, o0).

2

x to evaluate JL2 (Hint:

1+ cos“x

1+ cot®x = csc

Multiply the top and bottom of the integrand by csc? X.)
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436. [T] Approximate the points at which the graphs of

2
fx) = 2x2—=1 and gx) = (1 + 4x2) intersect to

four decimal places, and approximate the area between
their graphs to three decimal places.

437. 47.[T] Approximate the points at which the graphs
1

2
of f(x)= x2-1 and gx) = (x2 + 1) intersect to four

decimal places, and approximate the area between their
graphs to three decimal places.

438 Use the following graph to prove that

8.
J V1 —2dr =1y 1—x2+lsin_1x.
0 2 2

1—x2

615
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CHAPTER 5 REVIEW

KEY TERMS

average value of a function (or f,.) the average value of a function on an interval can be found by calculating the
definite integral of the function and dividing that value by the length of the interval

change of variables the substitution of a variable, such as u, for an expression in the integrand

definite integral a primary operation of calculus; the area between the curve and the x-axis over a given interval is a
definite integral

fundamental theorem of calculus the theorem, central to the entire development of calculus, that establishes the
relationship between differentiation and integration

fundamental theorem of calculus, part 1 uses a definite integral to define an antiderivative of a function

fundamental theorem of calculus, part 2 (also, evaluation theorem) we can evaluate a definite integral by
evaluating the antiderivative of the integrand at the endpoints of the interval and subtracting

integrable function a function is integrable if the limit defining the integral exists; in other words, if the limit of the
Riemann sums as n goes to infinity exists

integrand the function to the right of the integration symbol; the integrand includes the function being integrated

integration by substitution a technique for integration that allows integration of functions that are the result of a
chain-rule derivative

left-endpoint approximation an approximation of the area under a curve computed by using the left endpoint of each
subinterval to calculate the height of the vertical sides of each rectangle

limits of integration these values appear near the top and bottom of the integral sign and define the interval over which
the function should be integrated

lower sum a sum obtained by using the minimum value of f(x) on each subinterval

mean value theorem for integrals guarantees that a point ¢ exists such that f(c) is equal to the average value of the

function

net change theorem if we know the rate of change of a quantity, the net change theorem says the future quantity is
equal to the initial quantity plus the integral of the rate of change of the quantity

net signed area the area between a function and the x-axis such that the area below the x-axis is subtracted from the area
above the x-axis; the result is the same as the definite integral of the function

partition a set of points that divides an interval into subintervals
regular partition a partition in which the subintervals all have the same width

riemann sum u
an estimate of the area under the curve of the form A ~ Z SfxF )Ax

i=1
right-endpoint approximation the right-endpoint approximation is an approximation of the area of the rectangles
under a curve using the right endpoint of each subinterval to construct the vertical sides of each rectangle

sigma notation (also, summation notation) the Greek letter sigma (X) indicates addition of the values; the values of the
index above and below the sigma indicate where to begin the summation and where to end it

total area total area between a function and the x-axis is calculated by adding the area above the x-axis and the area
below the x-axis; the result is the same as the definite integral of the absolute value of the function

upper sum a sum obtained by using the maximum value of f(x) on each subinterval

variable of integration indicates which variable you are integrating with respect to; if it is x, then the function in the
integrand is followed by dx
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KEY EQUATIONS

¢ Properties of Sigma Notation
n

ZC=I’ZC

1

Q
NQ
I
R
N
2

(aj +b))

S

=2
+

)
|
S
Il
[
S
|
[
s

D= 1= 1D 1D
M= i
M= I

I
AM§

a;

n
ai+ Z a;
i=m+1

¢ Sums and Powers of Integers

1

1
—
I

n

Zi=1+2+...+n=w

i=1

3 2212402 g2 = MO DO
=1 6

3 (3,43 3 nl(n+1)?
DINAES RS NP b

4

Il
=]

¢ Left-Endpoint Approximation

AR Ly = fxo)Ax+ fODAX + - + fx,_ DAx = D, f(x;_ DAx
i=1

¢ Right-Endpoint Approximation

ARR, = f(x)DAx+ f(xp)Ax+ - + f(x)Ax = Z fxpAx
i=1

¢ Definite Integral

b n
[ fGodx = tim Y7 fly )Ax
a i=1

¢ Properties of the Definite Integral

f fdx =0
/: f)dx = — /u ’ f0dx

b b b
J 1@ +g@ldx= [ fodx+ [ g

b

b b
[f(x) — g(x)dx = J Fx)dx — / g(x)dx

b b
f cf(x)dx=c f f(x) for constant ¢

fa ’ f(x)dx = fa “Fodx + fc ’ f(x)dx

¢ Mean Value Theorem for Integrals

617
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If f(x) is continuous over an interval [a, b], then there is at least one point ¢ € [a, b] such that
fo=5/ " o

* Fundamental Theorem of Calculus Part 1
If f(x) is continuous over an interval [a, b], and the function F(x) is defined by F(x) = f: f(®dt, then
F'(x) = f().

* Fundamental Theorem of Calculus Part 2

b
If fis continuous over the interval [a, b] and F(x) is any antiderivative of f(x), then / fx)dx = F(b) — F(a).
a

¢ Net Change Theorem
b b
F(b) = F(a) + / F'(x)dx or / F'(x)dx = F(b) — F(a)

* Substitution with Indefinite Integrals

[Hewle’ dx = [ fadu=Fuw)+ € = Flg(x) + €

¢ Substitution with Definite Integrals
b
§(b)
flelg'@dx = [ fudu
g(a)
a
* Integrals of Exponential Functions

fexdx:ex+C

[axdx —a Lc
Ina

¢ Integration Formulas Involving Logarithmic Functions
fx_ldx =Inlx| + C

/lnxdx:xlnx—x+C=x(lnx— H+C
=X —
[logy xdx = Z(nx -1 +C

* Integrals That Produce Inverse Trigonometric Functions

% = sin_l(%)+ C
Wa*—u

zd” =Ltan 1(%)+C
a“+u
—u u‘zlu_ " =%sec_1(%)+C

KEY CONCEPTS

5.1 Approximating Areas

n
¢ The use of sigma (summation) notation of the form Z a; is useful for expressing long sums of values in compact
i=1
form.
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« For a continuous function defined over an interval [a, b], the process of dividing the interval into n equal parts,

extending a rectangle to the graph of the function, calculating the areas of the series of rectangles, and then summing
the areas yields an approximation of the area of that region.

b—a
T

¢ The width of each rectangle is Ax =

n
* Riemann sums are expressions of the form Z f(x;!‘ )Ax, and can be used to estimate the area under the curve
i=1

y = f(x). Left- and right-endpoint approximations are special kinds of Riemann sums where the values of {x;“ }
are chosen to be the left or right endpoints of the subintervals, respectively.
¢ Riemann sums allow for much flexibility in choosing the set of points {x;“ } at which the function is evaluated,

often with an eye to obtaining a lower sum or an upper sum.

5.2 The Definite Integral
¢ The definite integral can be used to calculate net signed area, which is the area above the x-axis less the area below
the x-axis. Net signed area can be positive, negative, or zero.

¢ The component parts of the definite integral are the integrand, the variable of integration, and the limits of
integration.

* Continuous functions on a closed interval are integrable. Functions that are not continuous may still be integrable,
depending on the nature of the discontinuities.

¢ The properties of definite integrals can be used to evaluate integrals.
¢ The area under the curve of many functions can be calculated using geometric formulas.

¢ The average value of a function can be calculated using definite integrals.

5.3 The Fundamental Theorem of Calculus

¢ The Mean Value Theorem for Integrals states that for a continuous function over a closed interval, there is a value ¢
such that f(c) equals the average value of the function. See The Mean Value Theorem for Integrals.

¢ The Fundamental Theorem of Calculus, Part 1 shows the relationship between the derivative and the integral. See
Fundamental Theorem of Calculus, Part 1.

e The Fundamental Theorem of Calculus, Part 2 is a formula for evaluating a definite integral in terms of an
antiderivative of its integrand. The total area under a curve can be found using this formula. See The
Fundamental Theorem of Calculus, Part 2.

5.4 Integration Formulas and the Net Change Theorem
¢ The net change theorem states that when a quantity changes, the final value equals the initial value plus the integral
of the rate of change. Net change can be a positive number, a negative number, or zero.

¢ The area under an even function over a symmetric interval can be calculated by doubling the area over the positive
x-axis. For an odd function, the integral over a symmetric interval equals zero, because half the area is negative.

5.5 Substitution

¢ Substitution is a technique that simplifies the integration of functions that are the result of a chain-rule derivative.
The term ‘substitution’ refers to changing variables or substituting the variable u and du for appropriate expressions
in the integrand.

¢ When using substitution for a definite integral, we also have to change the limits of integration.
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5.6 Integrals Involving Exponential and Logarithmic Functions

Chapter 5 | Integration

¢ Exponential and logarithmic functions arise in many real-world applications, especially those involving growth and

decay.

* Substitution is often used to evaluate integrals involving exponential functions or logarithms.

5.7 Integrals Resulting in Inverse Trigonometric Functions

» Formulas for derivatives of inverse trigonometric functions developed in Derivatives of Exponential and
Logarithmic Functions lead directly to integration formulas involving inverse trigonometric functions.

¢ Use the formulas listed in the rule on integration formulas resulting in inverse trigonometric functions to match up
the correct format and make alterations as necessary to solve the problem.

« Substitution is often required to put the integrand in the correct form.

CHAPTER 5 REVIEW EXERCISES

True or False. Justify your answer with a proof or a
counterexample. Assume all functions f and g are

continuous over their domains.

439. If f(x) >0, f'(x) >0 for all x, then the right-

b
hand rule underestimates the integral f f(x). Use a graph
a

to justify your answer.
b 5 b b
440. dx = d d
/a f02dx / f0dx / fdx

441. If f(x) <glx) for all

/a "o < / o).

442. All continuous functions have an antiderivative.

X € la, b, then

Evaluate the Riemann sums L, and R, for the following

functions over the specified interval. Compare your answer
with the exact answer, when possible, or use a calculator to
determine the answer.

443, y=3x>-2x+1 over [-1, 1]
444. y = ln(x2 + 1) over [0, e]
445. y= x2sinx over [0, 7]

446. y:ﬁ+% over [1, 4]

Evaluate the following integrals.

447. /1 (x3 -2+ 4x)dx
-1

4
448. J | —
0

V1 + 612

/2
449. / 2 sec(20)tan(20)do
/3

/4 2
450. / %5 *sinxcosxdx
0

Find the antiderivative.

451. J—dx .
(x+4)

452, xln(xz)dx

2
453. J X"y
1—x6

2x
454. [ € Todx
1+e™

Find the derivative.
t

455. dij v%dx
! 0 1+x2

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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3
d [Ty 2
456. dxfl 4 — 12dr

d In(x)
r
a57. 4L fl (41 + e')dr

cosx 9

458, 4 e!"dt

daxl

The following problems consider the historic average cost
per gigabyte of RAM on a computer.

Year 5-Year Change ($)
1980 0

1985 -5,468,750

1990 —755,495

1995 —73,005

2000 —-29,768

2005 -918

2010 =177

459. If the average cost per gigabyte of RAM in 2010 is
$12, find the average cost per gigabyte of RAM in 1980.

460. The average cost per gigabyte of RAM can be
approximated by the function

C(r) = 8, 500, 000(0.65)!, where ¢ is measured in years
since 1980, and C is cost in US$. Find the average cost per
gigabyte of RAM for 1980 to 2010.

461. Find the average cost of 1GB RAM for 2005 to
2010.

462. The velocity of a bullet from a rifle can be
approximated by v(t) = 640012 — 65057 + 2686, where
t is seconds after the shot and v is the velocity measured

in feet per second. This equation only models the velocity
for the first half-second after the shot: 0 <t < 0.5. What

is the total distance the bullet travels in 0.5 sec?

621

463. What is the average velocity of the bullet for the first
half-second?
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