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Figure 3.1 The Hennessey Venom GT can go from 0 to 200 mph in 14.51 seconds. (credit: modification of work by Codex41,
Flickr)
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Introduction
The Hennessey Venom GT is one of the fastest cars in the world. In 2014, it reached a record-setting speed of 270.49 mph.
It can go from 0 to 200 mph in 14.51 seconds. The techniques in this chapter can be used to calculate the acceleration the
Venom achieves in this feat (see Example 3.8.)

Calculating velocity and changes in velocity are important uses of calculus, but it is far more widespread than that. Calculus
is important in all branches of mathematics, science, and engineering, and it is critical to analysis in business and health as
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well. In this chapter, we explore one of the main tools of calculus, the derivative, and show convenient ways to calculate
derivatives. We apply these rules to a variety of functions in this chapter so that we can then explore applications of these
techniques.

3.1 | Defining the Derivative

Learning Objectives
3.1.1 Recognize the meaning of the tangent to a curve at a point.
3.1.2 Calculate the slope of a tangent line.
3.1.3 Identify the derivative as the limit of a difference quotient.
3.1.4 Calculate the derivative of a given function at a point.
3.1.5 Describe the velocity as a rate of change.
3.1.6 Explain the difference between average velocity and instantaneous velocity.
3.1.7 Estimate the derivative from a table of values.

Now that we have both a conceptual understanding of a limit and the practical ability to compute limits, we have established
the foundation for our study of calculus, the branch of mathematics in which we compute derivatives and integrals.
Most mathematicians and historians agree that calculus was developed independently by the Englishman Isaac Newton

and the German Gottfried Leibniz whose images appear in Figure 3.2. When we credit
Newton and Leibniz with developing calculus, we are really referring to the fact that Newton and Leibniz were the first
to understand the relationship between the derivative and the integral. Both mathematicians benefited from the work of
predecessors, such as Barrow, Fermat, and Cavalieri. The initial relationship between the two mathematicians appears to
have been amicable; however, in later years a bitter controversy erupted over whose work took precedence. Although it
seems likely that Newton did, indeed, arrive at the ideas behind calculus first, we are indebted to Leibniz for the notation
that we commonly use today.

Figure 3.2 Newton and Leibniz are credited with developing calculus independently.
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Tangent Lines
We begin our study of calculus by revisiting the notion of secant lines and tangent lines. Recall that we used the slope of
a secant line to a function at a point to estimate the rate of change, or the rate at which one variable changes in

relation to another variable. We can obtain the slope of the secant by choosing a value of near and drawing a line
through the points and as shown in Figure 3.3. The slope of this line is given by an equation in the

form of a difference quotient:

We can also calculate the slope of a secant line to a function at a value a by using this equation and replacing with
where is a value close to 0. We can then calculate the slope of the line through the points and

In this case, we find the secant line has a slope given by the following difference quotient with

increment

Definition

Let be a function defined on an interval containing If is in then

(3.1)

is a difference quotient.

Also, if is chosen so that is in then

(3.2)

is a difference quotient with increment

View the development of the derivative (http://www.openstax.org/l/20_calcapplets) with this applet.

These two expressions for calculating the slope of a secant line are illustrated in Figure 3.3. We will see that each of these
two methods for finding the slope of a secant line is of value. Depending on the setting, we can choose one or the other. The
primary consideration in our choice usually depends on ease of calculation.
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Figure 3.3 We can calculate the slope of a secant line in either of two ways.

In Figure 3.4(a) we see that, as the values of approach the slopes of the secant lines provide better estimates of the
rate of change of the function at Furthermore, the secant lines themselves approach the tangent line to the function at

which represents the limit of the secant lines. Similarly, Figure 3.4(b) shows that as the values of get closer to
the secant lines also approach the tangent line. The slope of the tangent line at is the rate of change of the function at
as shown in Figure 3.4(c).

Figure 3.4 The secant lines approach the tangent line (shown in green) as the second point approaches the first.

You can use this site (http://www.openstax.org/l/20_diffmicros) to explore graphs to see if they have a
tangent line at a point.

In Figure 3.5 we show the graph of and its tangent line at in a series of tighter intervals about

As the intervals become narrower, the graph of the function and its tangent line appear to coincide, making the values on
the tangent line a good approximation to the values of the function for choices of close to In fact, the graph of

itself appears to be locally linear in the immediate vicinity of
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Figure 3.5 For values of close to the graph of and its tangent line appear to coincide.

Formally we may define the tangent line to the graph of a function as follows.

Definition

Let be a function defined in an open interval containing The tangent line to at is the line passing

through the point having slope

(3.3)

provided this limit exists.

Equivalently, we may define the tangent line to at to be the line passing through the point having

slope

(3.4)

provided this limit exists.

Just as we have used two different expressions to define the slope of a secant line, we use two different forms to define the
slope of the tangent line. In this text we use both forms of the definition. As before, the choice of definition will depend
on the setting. Now that we have formally defined a tangent line to a function at a point, we can use this definition to find
equations of tangent lines.
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Example 3.1

Finding a Tangent Line

Find the equation of the line tangent to the graph of at

Solution
First find the slope of the tangent line. In this example, use Equation 3.3.

Next, find a point on the tangent line. Since the line is tangent to the graph of at it passes through

the point We have so the tangent line passes through the point

Using the point-slope equation of the line with the slope and the point we obtain the line

Simplifying, we have The graph of and its tangent line at are

shown in Figure 3.6.

Figure 3.6 The tangent line to at

Example 3.2

The Slope of a Tangent Line Revisited

Use Equation 3.4 to find the slope of the line tangent to the graph of at

Solution
The steps are very similar to Example 3.1. See Equation 3.4 for the definition.
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We obtained the same value for the slope of the tangent line by using the other definition, demonstrating that the
formulas can be interchanged.

Example 3.3

Finding the Equation of a Tangent Line

Find the equation of the line tangent to the graph of at

Solution
We can use Equation 3.3, but as we have seen, the results are the same if we use Equation 3.4.

We now know that the slope of the tangent line is To find the equation of the tangent line, we also need a

point on the line. We know that Since the tangent line passes through the point we can use

the point-slope equation of a line to find the equation of the tangent line. Thus the tangent line has the equation
The graphs of and are shown in Figure 3.7.
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3.1

Figure 3.7 The line is tangent to at

Find the slope of the line tangent to the graph of at

The Derivative of a Function at a Point
The type of limit we compute in order to find the slope of the line tangent to a function at a point occurs in many applications
across many disciplines. These applications include velocity and acceleration in physics, marginal profit functions in
business, and growth rates in biology. This limit occurs so frequently that we give this value a special name: the derivative.
The process of finding a derivative is called differentiation.

Definition

Let be a function defined in an open interval containing The derivative of the function at denoted

by is defined by

(3.5)

provided this limit exists.

Alternatively, we may also define the derivative of at as

(3.6)

Example 3.4

Estimating a Derivative

For use a table to estimate using Equation 3.5.

Solution
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3.2

Create a table using values of just below and just above

After examining the table, we see that a good estimate is

For use a table to estimate using Equation 3.6.

Example 3.5

Finding a Derivative

For find by using Equation 3.5.

Solution
Substitute the given function and value directly into the equation.
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3.3

Example 3.6

Revisiting the Derivative

For find by using Equation 3.6.

Solution
Using this equation, we can substitute two values of the function into the equation, and we should get the same
value as in Example 3.5.

The results are the same whether we use Equation 3.5 or Equation 3.6.

For find

Velocities and Rates of Change
Now that we can evaluate a derivative, we can use it in velocity applications. Recall that if is the position of an object
moving along a coordinate axis, the average velocity of the object over a time interval if or if is
given by the difference quotient

(3.7)

As the values of approach the values of approach the value we call the instantaneous velocity at That is,

instantaneous velocity at denoted is given by

(3.8)

To better understand the relationship between average velocity and instantaneous velocity, see Figure 3.8. In this figure,
the slope of the tangent line (shown in red) is the instantaneous velocity of the object at time whose position at time

is given by the function The slope of the secant line (shown in green) is the average velocity of the object over the
time interval
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Figure 3.8 The slope of the secant line is the average velocity
over the interval The slope of the tangent line is the
instantaneous velocity.

We can use Equation 3.5 to calculate the instantaneous velocity, or we can estimate the velocity of a moving object by
using a table of values. We can then confirm the estimate by using Equation 3.7.

Example 3.7

Estimating Velocity

A lead weight on a spring is oscillating up and down. Its position at time with respect to a fixed horizontal
line is given by (Figure 3.9). Use a table of values to estimate Check the estimate by using
Equation 3.5.

Figure 3.9 A lead weight suspended from a spring in vertical
oscillatory motion.

Solution
We can estimate the instantaneous velocity at by computing a table of average velocities using values of
approaching as shown in Table 3.1.
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3.4

Table 3.1
Average velocities using values of t
approaching 0

From the table we see that the average velocity over the time interval is the average
velocity over the time interval is and so forth. Using this table of values, it appears
that a good estimate is

By using Equation 3.5, we can see that

Thus, in fact,

A rock is dropped from a height of feet. Its height above ground at time seconds later is given by

Find its instantaneous velocity second after it is dropped, using Equation
3.5.

As we have seen throughout this section, the slope of a tangent line to a function and instantaneous velocity are related
concepts. Each is calculated by computing a derivative and each measures the instantaneous rate of change of a function, or
the rate of change of a function at any point along the function.

Definition

The instantaneous rate of change of a function at a value is its derivative
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Example 3.8

Chapter Opener: Estimating Rate of Change of Velocity

Figure 3.10 (credit: modification of work by Codex41,
Flickr)

Reaching a top speed of mph, the Hennessey Venom GT is one of the fastest cars in the world. In tests it
went from to mph in seconds, from mph in seconds, from mph in
seconds, and from mph in seconds. Use this data to draw a conclusion about the rate of change
of velocity (that is, its acceleration) as it approaches mph. Does the rate at which the car is accelerating
appear to be increasing, decreasing, or constant?

Solution
First observe that mph = ft/s, mph ft/s, mph ft/s, and mph

ft/s. We can summarize the information in a table.

Table 3.2
at different values

of t

Now compute the average acceleration of the car in feet per second per second on intervals of the form
as approaches as shown in the following table.
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Table 3.3
Average acceleration

The rate at which the car is accelerating is decreasing as its velocity approaches mph ft/s).

Example 3.9

Rate of Change of Temperature

A homeowner sets the thermostat so that the temperature in the house begins to drop from at p.m.,
reaches a low of during the night, and rises back to by a.m. the next morning. Suppose that the

temperature in the house is given by for where is the number of hours
past p.m. Find the instantaneous rate of change of the temperature at midnight.

Solution
Since midnight is hours past p.m., we want to compute Refer to Equation 3.5.

The instantaneous rate of change of the temperature at midnight is per hour.

226 Chapter 3 | Derivatives

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



3.5

Example 3.10

Rate of Change of Profit

A toy company can sell electronic gaming systems at a price of dollars per gaming

system. The cost of manufacturing systems is given by dollars. Find the rate of change
of profit when games are produced. Should the toy company increase or decrease production?

Solution
The profit earned by producing gaming systems is where is the revenue obtained
from the sale of games. Since the company can sell games at per game,

Consequently,

Therefore, evaluating the rate of change of profit gives

Since the rate of change of profit and the company should increase
production.

A coffee shop determines that the daily profit on scones obtained by charging dollars per scone is

The coffee shop currently charges per scone. Find the rate of

change of profit when the price is and decide whether or not the coffee shop should consider raising or
lowering its prices on scones.
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3.1 EXERCISES
For the following exercises, use Equation 3.1 to find the
slope of the secant line between the values and for

each function

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

For the following functions,

a. use Equation 3.4 to find the slope of the tangent
line and

b. find the equation of the tangent line to at

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

For the following functions find using

Equation 3.1.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

For the following exercises, given the function

a. find the slope of the secant line for each point

with value given in the table.

b. Use the answers from a. to estimate the value of the
slope of the tangent line at

c. Use the answer from b. to find the equation of the
tangent line to at point
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31. [T] (Round to

decimal places.)

x Slope x Slope

1.1 (i) 0.9 (vii)

1.01 (ii) 0.99 (viii)

1.001 (iii) 0.999 (ix)

1.0001 (iv) 0.9999 (x)

1.00001 (v) 0.99999 (xi)

1.000001 (vi) 0.999999 (xii)

32. [T]

x Slope x Slope

0.1 (i) (vii)

0.01 (ii) (viii)

0.001 (iii) (ix)

0.0001 (iv) (x)

0.00001 (v) (xi)

0.000001 (vi) (xii)

33. [T] (Round to decimal

places.)

x Slope

(i)

(ii)

(iii)

(iv)

(v)

−0.000001 (vi)

34. [T]

x Slope

3.1 (i)

3.14 (ii)

3.141 (iii)

3.1415 (iv)

3.14159 (v)

3.141592 (vi)

[T] For the following position functions an

object is moving along a straight line, where is in seconds
and is in meters. Find

a. the simplified expression for the average velocity
from to

b. the average velocity between and
where

and and

c. use the answer from a. to estimate the instantaneous
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velocity at second.

35.

36.

37.

38.

39. Use the following graph to evaluate a. and b.

40. Use the following graph to evaluate a. and b.

For the following exercises, use the limit definition of
derivative to show that the derivative does not exist at

for each of the given functions.

41.

42.

43.

44.

45. [T] The position in feet of a race car along a straight
track after seconds is modeled by the function

a. Find the average velocity of the vehicle over the
following time intervals to four decimal places:

i. [4, 4.1]
ii. [4, 4.01]

iii. [4, 4.001]
iv. [4, 4.0001]

b. Use a. to draw a conclusion about the instantaneous
velocity of the vehicle at seconds.

46. [T] The distance in feet that a ball rolls down an
incline is modeled by the function where t is
seconds after the ball begins rolling.

a. Find the average velocity of the ball over the
following time intervals:

i. [5, 5.1]
ii. [5, 5.01]

iii. [5, 5.001]
iv. [5, 5.0001]

b. Use the answers from a. to draw a conclusion about
the instantaneous velocity of the ball at
seconds.

47. Two vehicles start out traveling side by side along
a straight road. Their position functions, shown in the
following graph, are given by and

where is measured in feet and is measured in seconds.

a. Which vehicle has traveled farther at
seconds?

b. What is the approximate velocity of each vehicle at
seconds?

c. Which vehicle is traveling faster at seconds?
d. What is true about the positions of the vehicles at

seconds?
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48. [T] The total cost in hundreds of dollars,
to produce jars of mayonnaise is given by

a. Calculate the average cost per jar over the
following intervals:

i. [100, 100.1]
ii. [100, 100.01]

iii. [100, 100.001]
iv. [100, 100.0001]

b. Use the answers from a. to estimate the average
cost to produce jars of mayonnaise.

49. [T] For the function

do the following.
a. Use a graphing calculator to graph f in an

appropriate viewing window.
b. Use the ZOOM feature on the calculator to

approximate the two values of for which

50. [T] For the function do the

following.
a. Use a graphing calculator to graph in an

appropriate viewing window.
b. Use the ZOOM feature on the calculator to

approximate the values of for which

51. Suppose that computes the number of gallons
of gas used by a vehicle traveling miles. Suppose the
vehicle gets mpg.

a. Find a mathematical expression for
b. What is Explain the physical meaning.
c. What is Explain the physical meaning.

52. [T] For the function do the

following.
a. Use a graphing calculator to graph in an

appropriate viewing window.
b. Use the function, which numerically finds

the derivative, on a graphing calculator to estimate
and

53. [T] For the function do the

following.
a. Use a graphing calculator to graph in an

appropriate viewing window.
b. Use the function on a graphing calculator

to find and
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3.2 | The Derivative as a Function

Learning Objectives
3.2.1 Define the derivative function of a given function.
3.2.2 Graph a derivative function from the graph of a given function.
3.2.3 State the connection between derivatives and continuity.
3.2.4 Describe three conditions for when a function does not have a derivative.
3.2.5 Explain the meaning of a higher-order derivative.

As we have seen, the derivative of a function at a given point gives us the rate of change or slope of the tangent line to the
function at that point. If we differentiate a position function at a given time, we obtain the velocity at that time. It seems
reasonable to conclude that knowing the derivative of the function at every point would produce valuable information about
the behavior of the function. However, the process of finding the derivative at even a handful of values using the techniques
of the preceding section would quickly become quite tedious. In this section we define the derivative function and learn a
process for finding it.

Derivative Functions
The derivative function gives the derivative of a function at each point in the domain of the original function for which the
derivative is defined. We can formally define a derivative function as follows.

Definition

Let be a function. The derivative function, denoted by is the function whose domain consists of those values

of such that the following limit exists:

(3.9)

A function is said to be differentiable at if exists. More generally, a function is said to be differentiable
on if it is differentiable at every point in an open set and a differentiable function is one in which exists on

its domain.

In the next few examples we use Equation 3.9 to find the derivative of a function.

Example 3.11

Finding the Derivative of a Square-Root Function

Find the derivative of

Solution
Start directly with the definition of the derivative function. Use Equation 3.1.
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3.6

Example 3.12

Finding the Derivative of a Quadratic Function

Find the derivative of the function

Solution
Follow the same procedure here, but without having to multiply by the conjugate.

Find the derivative of

We use a variety of different notations to express the derivative of a function. In Example 3.12 we showed that if
then If we had expressed this function in the form we could have

expressed the derivative as or We could have conveyed the same information by writing

Thus, for the function each of the following notations represents the derivative of
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In place of we may also use Use of the notation (called Leibniz notation) is quite common in

engineering and physics. To understand this notation better, recall that the derivative of a function at a point is the limit of
the slopes of secant lines as the secant lines approach the tangent line. The slopes of these secant lines are often expressed

in the form where is the difference in the values corresponding to the difference in the values, which are

expressed as (Figure 3.11). Thus the derivative, which can be thought of as the instantaneous rate of change of

with respect to is expressed as

Figure 3.11 The derivative is expressed as

Graphing a Derivative
We have already discussed how to graph a function, so given the equation of a function or the equation of a derivative
function, we could graph it. Given both, we would expect to see a correspondence between the graphs of these two
functions, since gives the rate of change of a function (or slope of the tangent line to

In Example 3.11 we found that for If we graph these functions on the same axes, as in Figure
3.12, we can use the graphs to understand the relationship between these two functions. First, we notice that is

increasing over its entire domain, which means that the slopes of its tangent lines at all points are positive. Consequently,
we expect for all values of in its domain. Furthermore, as increases, the slopes of the tangent lines to

are decreasing and we expect to see a corresponding decrease in We also observe that is undefined and that

corresponding to a vertical tangent to at

234 Chapter 3 | Derivatives

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



Figure 3.12 The derivative is positive everywhere

because the function is increasing.

In Example 3.12 we found that for The graphs of these functions are shown in Figure
3.13. Observe that is decreasing for For these same values of For values of is

increasing and Also, has a horizontal tangent at and

Figure 3.13 The derivative where the function

is decreasing and where is increasing.

The derivative is zero where the function has a horizontal
tangent.

Example 3.13

Sketching a Derivative Using a Function

Use the following graph of to sketch a graph of

Chapter 3 | Derivatives 235



3.7

Solution
The solution is shown in the following graph. Observe that is increasing and on Also,

is decreasing and on and on Also note that has horizontal tangents

at and and and

Sketch the graph of On what interval is the graph of above the -axis?

Derivatives and Continuity
Now that we can graph a derivative, let’s examine the behavior of the graphs. First, we consider the relationship between
differentiability and continuity. We will see that if a function is differentiable at a point, it must be continuous there;
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however, a function that is continuous at a point need not be differentiable at that point. In fact, a function may be continuous
at a point and fail to be differentiable at the point for one of several reasons.

Theorem 3.1: Differentiability Implies Continuity

Let be a function and be in its domain. If is differentiable at then is continuous at

Proof
If is differentiable at then exists and

We want to show that is continuous at by showing that Thus,

Therefore, since is defined and we conclude that is continuous at

□

We have just proven that differentiability implies continuity, but now we consider whether continuity implies
differentiability. To determine an answer to this question, we examine the function This function is continuous

everywhere; however, is undefined. This observation leads us to believe that continuity does not imply

differentiability. Let’s explore further. For

This limit does not exist because

See Figure 3.14.
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Figure 3.14 The function is continuous at but

is not differentiable at

Let’s consider some additional situations in which a continuous function fails to be differentiable. Consider the function

Thus does not exist. A quick look at the graph of clarifies the situation. The function has a vertical

tangent line at (Figure 3.15).

Figure 3.15 The function has a vertical tangent at

It is continuous at but is not differentiable at

The function also has a derivative that exhibits interesting behavior at We see that

This limit does not exist, essentially because the slopes of the secant lines continuously change direction as they approach
zero (Figure 3.16).
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Figure 3.16 The function is not

differentiable at

In summary:

1. We observe that if a function is not continuous, it cannot be differentiable, since every differentiable function must
be continuous. However, if a function is continuous, it may still fail to be differentiable.

2. We saw that failed to be differentiable at because the limit of the slopes of the tangent lines on the

left and right were not the same. Visually, this resulted in a sharp corner on the graph of the function at From
this we conclude that in order to be differentiable at a point, a function must be “smooth” at that point.

3. As we saw in the example of a function fails to be differentiable at a point where there is a vertical

tangent line.

4. As we saw with a function may fail to be differentiable at a point in more complicated

ways as well.

Example 3.14

A Piecewise Function that is Continuous and Differentiable

A toy company wants to design a track for a toy car that starts out along a parabolic curve and then converts
to a straight line (Figure 3.17). The function that describes the track is to have the form

where and are in inches. For the car to move smoothly along the

track, the function must be both continuous and differentiable at Find values of and that make

both continuous and differentiable.
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3.8

Figure 3.17 For the car to move smoothly along the track, the
function must be both continuous and differentiable.

Solution
For the function to be continuous at Thus, since

and we must have Equivalently, we have

For the function to be differentiable at

must exist. Since is defined using different rules on the right and the left, we must evaluate this limit from

the right and the left and then set them equal to each other:

We also have

This gives us Thus and

Find values of and that make both continuous and differentiable at
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Higher-Order Derivatives
The derivative of a function is itself a function, so we can find the derivative of a derivative. For example, the derivative
of a position function is the rate of change of position, or velocity. The derivative of velocity is the rate of change of
velocity, which is acceleration. The new function obtained by differentiating the derivative is called the second derivative.
Furthermore, we can continue to take derivatives to obtain the third derivative, fourth derivative, and so on. Collectively,
these are referred to as higher-order derivatives. The notation for the higher-order derivatives of can be

expressed in any of the following forms:

It is interesting to note that the notation for may be viewed as an attempt to express more compactly.

Analogously,

Example 3.15

Finding a Second Derivative

For find

Solution
First find

Next, find by taking the derivative of
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3.9

3.10

Find for

Example 3.16

Finding Acceleration

The position of a particle along a coordinate axis at time (in seconds) is given by (in
meters). Find the function that describes its acceleration at time

Solution
Since and we begin by finding the derivative of

Next,

Thus,

For find
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3.2 EXERCISES
For the following exercises, use the definition of a
derivative to find

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

For the following exercises, use the graph of to

sketch the graph of its derivative

64.

65.

66.
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67.

For the following exercises, the given limit represents the
derivative of a function at Find

and

68.

69.

70.

71.

72.

73.

For the following functions,

a. sketch the graph and

b. use the definition of a derivative to show that the
function is not differentiable at

74.

75.

76.

77.

For the following graphs,

a. determine for which values of the
exists but is not continuous at

and

b. determine for which values of the function
is continuous but not differentiable at

78.

79.
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80. Use the graph to evaluate a. b. c.

d. and e. if it exists.

For the following functions, use

to find

81.

82.

83.

For the following exercises, use a calculator to graph

Determine the function then use a calculator to

graph

84. [T]

85. [T]

86. [T]

87. [T]

88. [T]

89. [T]

For the following exercises, describe what the two
expressions represent in terms of each of the given
situations. Be sure to include units.

a.

b.

90. denotes the population of a city at time in
years.

91. denotes the total amount of money (in
thousands of dollars) spent on concessions by customers
at an amusement park.

92. denotes the total cost (in thousands of dollars)
of manufacturing clock radios.

93. denotes the grade (in percentage points) received

on a test, given hours of studying.

94. denotes the cost (in dollars) of a sociology
textbook at university bookstores in the United States in
years since

95. denotes atmospheric pressure at an altitude of

feet.

96. Sketch the graph of a function with all of

the following properties:
a. for

b.

c. for

d. and

e. and

f. does not exist.

97. Suppose temperature in degrees Fahrenheit at a
height in feet above the ground is given by

a. Give a physical interpretation, with units, of
b. If we know that explain the

physical meaning.

98. Suppose the total profit of a company is

thousand dollars when units of an item are sold.

a. What does for measure,

and what are the units?
b. What does measure, and what are the units?
c. Suppose that what is the

approximate change in profit if the number of items
sold increases from
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99. The graph in the following figure models the number
of people who have come down with the flu weeks
after its initial outbreak in a town with a population of

citizens.
a. Describe what represents and how it behaves

as increases.
b. What does the derivative tell us about how this

town is affected by the flu outbreak?

For the following exercises, use the following table, which
shows the height of the Saturn rocket for the Apollo

mission seconds after launch.

Time (seconds) Height (meters)

100. What is the physical meaning of What are
the units?

101. [T] Construct a table of values for and graph
both and on the same graph. (Hint: for interior
points, estimate both the left limit and right limit and
average them. An interior point of an interval I is an
element of I which is not an endpoint of I.)

102. [T] The best linear fit to the data is given by
where is the height of the

rocket (in meters) and is the time elapsed since takeoff.
From this equation, determine Graph with
the given data and, on a separate coordinate plane, graph

103. [T] The best quadratic fit to the data is given by
where is the

height of the rocket (in meters) and is the time elapsed
since takeoff. From this equation, determine Graph

with the given data and, on a separate coordinate
plane, graph

104. [T] The best cubic fit to the data is given by
where

is the height of the rocket (in m) and is the time
elapsed since take off. From this equation, determine

Graph with the given data and, on a separate
coordinate plane, graph Does the linear, quadratic,
or cubic function fit the data best?

105. Using the best linear, quadratic, and cubic fits to
the data, determine what are. What
are the physical meanings of and
what are their units?
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3.3 | Differentiation Rules

Learning Objectives
3.3.1 State the constant, constant multiple, and power rules.
3.3.2 Apply the sum and difference rules to combine derivatives.
3.3.3 Use the product rule for finding the derivative of a product of functions.
3.3.4 Use the quotient rule for finding the derivative of a quotient of functions.
3.3.5 Extend the power rule to functions with negative exponents.
3.3.6 Combine the differentiation rules to find the derivative of a polynomial or rational function.

Finding derivatives of functions by using the definition of the derivative can be a lengthy and, for certain functions, a rather
challenging process. For example, previously we found that by using a process that involved multiplying an

expression by a conjugate prior to evaluating a limit. The process that we could use to evaluate using the definition,

while similar, is more complicated. In this section, we develop rules for finding derivatives that allow us to bypass this
process. We begin with the basics.

The Basic Rules
The functions and where is a positive integer are the building blocks from which all polynomials

and rational functions are constructed. To find derivatives of polynomials and rational functions efficiently without resorting
to the limit definition of the derivative, we must first develop formulas for differentiating these basic functions.

The Constant Rule
We first apply the limit definition of the derivative to find the derivative of the constant function, For this

function, both and so we obtain the following result:

The rule for differentiating constant functions is called the constant rule. It states that the derivative of a constant function
is zero; that is, since a constant function is a horizontal line, the slope, or the rate of change, of a constant function is We
restate this rule in the following theorem.

Theorem 3.2: The Constant Rule

Let be a constant.

If then

Alternatively, we may express this rule as

Example 3.17
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3.11

Applying the Constant Rule

Find the derivative of

Solution
This is just a one-step application of the rule:

Find the derivative of

The Power Rule
We have shown that

At this point, you might see a pattern beginning to develop for derivatives of the form We continue our

examination of derivative formulas by differentiating power functions of the form where is a positive integer.

We develop formulas for derivatives of this type of function in stages, beginning with positive integer powers. Before stating
and proving the general rule for derivatives of functions of this form, we take a look at a specific case, As we go

through this derivation, note that the technique used in this case is essentially the same as the technique used to prove the
general case.

Example 3.18

Differentiating

Find

Solution
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3.12 Find

As we shall see, the procedure for finding the derivative of the general form is very similar. Although it is often

unwise to draw general conclusions from specific examples, we note that when we differentiate the power on

becomes the coefficient of in the derivative and the power on in the derivative decreases by 1. The following
theorem states that the power rule holds for all positive integer powers of We will eventually extend this result to
negative integer powers. Later, we will see that this rule may also be extended first to rational powers of and then to
arbitrary powers of Be aware, however, that this rule does not apply to functions in which a constant is raised to a
variable power, such as

Theorem 3.3: The Power Rule

Let be a positive integer. If then

Alternatively, we may express this rule as

Proof

For where is a positive integer, we have

we see that
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3.13

Next, divide both sides by h:

Thus,

Finally,

□

Example 3.19

Applying the Power Rule

Find the derivative of the function by applying the power rule.

Solution
Using the power rule with we obtain

Find the derivative of

The Sum, Difference, and Constant Multiple Rules
We find our next differentiation rules by looking at derivatives of sums, differences, and constant multiples of functions.
Just as when we work with functions, there are rules that make it easier to find derivatives of functions that we add, subtract,
or multiply by a constant. These rules are summarized in the following theorem.

Theorem 3.4: Sum, Difference, and Constant Multiple Rules

Let and be differentiable functions and be a constant. Then each of the following equations holds.

Sum Rule. The derivative of the sum of a function and a function is the same as the sum of the derivative of

and the derivative of

that is,

Difference Rule. The derivative of the difference of a function f and a function g is the same as the difference of the
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derivative of f and the derivative of

that is,

Constant Multiple Rule. The derivative of a constant k multiplied by a function f is the same as the constant multiplied
by the derivative:

that is,

Proof
We provide only the proof of the sum rule here. The rest follow in a similar manner.

For differentiable functions and we set Using the limit definition of the derivative we

have

By substituting and we obtain

Rearranging and regrouping the terms, we have

We now apply the sum law for limits and the definition of the derivative to obtain

□

Example 3.20

Applying the Constant Multiple Rule

Find the derivative of and compare it to the derivative of

Solution
We use the power rule directly:

Since has derivative we see that the derivative of is 3 times the derivative of
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3.14

This relationship is illustrated in Figure 3.18.

Figure 3.18 The derivative of is 3 times the derivative of

Example 3.21

Applying Basic Derivative Rules

Find the derivative of

Solution
We begin by applying the rule for differentiating the sum of two functions, followed by the rules for
differentiating constant multiples of functions and the rule for differentiating powers. To better understand the
sequence in which the differentiation rules are applied, we use Leibniz notation throughout the solution:

Find the derivative of

Example 3.22

Finding the Equation of a Tangent Line
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3.15

Find the equation of the line tangent to the graph of at

Solution
To find the equation of the tangent line, we need a point and a slope. To find the point, compute

This gives us the point Since the slope of the tangent line at 1 is we must first find Using

the definition of a derivative, we have

so the slope of the tangent line is Using the point-slope formula, we see that the equation of the

tangent line is

Putting the equation of the line in slope-intercept form, we obtain

Find the equation of the line tangent to the graph of at Use the point-slope

form.

The Product Rule
Now that we have examined the basic rules, we can begin looking at some of the more advanced rules. The first one
examines the derivative of the product of two functions. Although it might be tempting to assume that the derivative of
the product is the product of the derivatives, similar to the sum and difference rules, the product rule does not follow this
pattern. To see why we cannot use this pattern, consider the function whose derivative is and not

Theorem 3.5: Product Rule

Let and be differentiable functions. Then

That is,

This means that the derivative of a product of two functions is the derivative of the first function times the second
function plus the derivative of the second function times the first function.

Proof
We begin by assuming that and are differentiable functions. At a key point in this proof we need to use the

fact that, since is differentiable, it is also continuous. In particular, we use the fact that since is continuous,
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By applying the limit definition of the derivative to we obtain

By adding and subtracting in the numerator, we have

After breaking apart this quotient and applying the sum law for limits, the derivative becomes

Rearranging, we obtain

By using the continuity of the definition of the derivatives of and and applying the limit laws, we arrive

at the product rule,

□

Example 3.23

Applying the Product Rule to Functions at a Point

For use the product rule to find if and

Solution
Since and hence

Example 3.24

Applying the Product Rule to Binomials

For find by applying the product rule. Check the result by first finding the

product and then differentiating.

Solution

If we set and then and Thus,

Simplifying, we have
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3.16

To check, we see that and, consequently,

Use the product rule to obtain the derivative of

The Quotient Rule
Having developed and practiced the product rule, we now consider differentiating quotients of functions. As we see in the
following theorem, the derivative of the quotient is not the quotient of the derivatives; rather, it is the derivative of the
function in the numerator times the function in the denominator minus the derivative of the function in the denominator
times the function in the numerator, all divided by the square of the function in the denominator. In order to better grasp
why we cannot simply take the quotient of the derivatives, keep in mind that

Theorem 3.6: The Quotient Rule

Let and be differentiable functions. Then

That is,

The proof of the quotient rule is very similar to the proof of the product rule, so it is omitted here. Instead, we apply this
new rule for finding derivatives in the next example.

Example 3.25

Applying the Quotient Rule

Use the quotient rule to find the derivative of

Solution

Let and Thus, and Substituting into the quotient rule, we

have
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3.17

Simplifying, we obtain

Find the derivative of

It is now possible to use the quotient rule to extend the power rule to find derivatives of functions of the form where
is a negative integer.

Theorem 3.7: Extended Power Rule

If is a negative integer, then

Proof
If is a negative integer, we may set so that n is a positive integer with Since for each positive integer

we may now apply the quotient rule by setting and In this case, and

Thus,

Simplifying, we see that

Finally, observe that since by substituting we have

□

Example 3.26

Using the Extended Power Rule

Find

Solution
By applying the extended power rule with we obtain
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3.18

Example 3.27

Using the Extended Power Rule and the Constant Multiple Rule

Use the extended power rule and the constant multiple rule to find the derivative of

Solution
It may seem tempting to use the quotient rule to find this derivative, and it would certainly not be incorrect to do
so. However, it is far easier to differentiate this function by first rewriting it as

Find the derivative of using the extended power rule.

Combining Differentiation Rules
As we have seen throughout the examples in this section, it seldom happens that we are called on to apply just one
differentiation rule to find the derivative of a given function. At this point, by combining the differentiation rules, we may
find the derivatives of any polynomial or rational function. Later on we will encounter more complex combinations of
differentiation rules. A good rule of thumb to use when applying several rules is to apply the rules in reverse of the order in
which we would evaluate the function.

Example 3.28

Combining Differentiation Rules

For find

Solution
Finding this derivative requires the sum rule, the constant multiple rule, and the product rule.
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Example 3.29

Extending the Product Rule

For express in terms of and their derivatives.

Solution
We can think of the function as the product of the function and the function That is,

Thus,

Example 3.30

Combining the Quotient Rule and the Product Rule

For find

Solution
This procedure is typical for finding the derivative of a rational function.
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3.19 Find

Example 3.31

Determining Where a Function Has a Horizontal Tangent

Determine the values of for which has a horizontal tangent line.

Solution
To find the values of for which has a horizontal tangent line, we must solve Since

we must solve Thus we see that the function has horizontal tangent lines at and

as shown in the following graph.

Figure 3.19 This function has horizontal tangent lines at x =
2/3 and x = 4.

Example 3.32

Finding a Velocity

The position of an object on a coordinate axis at time is given by What is the initial velocity of

the object?

Solution
Since the initial velocity is begin by finding by applying the quotient rule:
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3.20

After evaluating, we see that

Find the values of for which the graph of has a tangent line parallel to the line
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Formula One Grandstands

Formula One car races can be very exciting to watch and attract a lot of spectators. Formula One track designers have
to ensure sufficient grandstand space is available around the track to accommodate these viewers. However, car racing
can be dangerous, and safety considerations are paramount. The grandstands must be placed where spectators will not
be in danger should a driver lose control of a car (Figure 3.20).

Figure 3.20 The grandstand next to a straightaway of the Circuit de Barcelona-Catalunya race track, located where
the spectators are not in danger.

Safety is especially a concern on turns. If a driver does not slow down enough before entering the turn, the car may
slide off the racetrack. Normally, this just results in a wider turn, which slows the driver down. But if the driver loses
control completely, the car may fly off the track entirely, on a path tangent to the curve of the racetrack.

Suppose you are designing a new Formula One track. One section of the track can be modeled by the function
(Figure 3.21). The current plan calls for grandstands to be built along the first straightaway

and around a portion of the first curve. The plans call for the front corner of the grandstand to be located at the point
We want to determine whether this location puts the spectators in danger if a driver loses control of the

car.
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Figure 3.21 (a) One section of the racetrack can be modeled by the function (b) The

front corner of the grandstand is located at

1. Physicists have determined that drivers are most likely to lose control of their cars as they are coming into a
turn, at the point where the slope of the tangent line is 1. Find the coordinates of this point near the turn.

2. Find the equation of the tangent line to the curve at this point.

3. To determine whether the spectators are in danger in this scenario, find the x-coordinate of the point where the
tangent line crosses the line Is this point safely to the right of the grandstand? Or are the spectators

in danger?

4. What if a driver loses control earlier than the physicists project? Suppose a driver loses control at the point
What is the slope of the tangent line at this point?

5. If a driver loses control as described in part 4, are the spectators safe?

6. Should you proceed with the current design for the grandstand, or should the grandstands be moved?
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3.3 EXERCISES
For the following exercises, find for each function.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

For the following exercises, find the equation of the tangent
line to the graph of the given function at the indicated
point. Use a graphing calculator to graph the function and
the tangent line.

118. [T] at

119. [T] at

120. [T] at

121. [T] at

For the following exercises, assume that and

are both differentiable functions for all Find the
derivative of each of the functions

122.

123.

124.

125.

For the following exercises, assume that and

are both differentiable functions with values as given in
the following table. Use the following table to calculate the
following derivatives.

126. Find if

127. Find if

128. Find if

129. Find if

For the following exercises, use the following figure to find
the indicated derivatives, if they exist.
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130. Let Find

a.
b. and
c.

131. Let Find

a.
b. and
c.

132. Let Find

a.
b. and
c.

For the following exercises,

a. evaluate and

b. graph the function and the tangent line at

133. [T]

134. [T]

135. [T]

136. [T]

137. Find the equation of the tangent line to the graph of
at

138. Find the equation of the tangent line to the graph of
at

139. Find the equation of the tangent line to the graph of
at

140. Find the point on the graph of such that

the tangent line at that point has an intercept of 6.

141. Find the equation of the line passing through the
point and tangent to the graph of

142. Determine all points on the graph of
for which

a. the tangent line is horizontal
b. the tangent line has a slope of

143. Find a quadratic polynomial such that
and

144. A car driving along a freeway with traffic has
traveled meters in seconds.

a. Determine the time in seconds when the velocity of
the car is 0.

b. Determine the acceleration of the car when the
velocity is 0.

145. [T] A herring swimming along a straight line has

traveled feet in seconds. Determine the

velocity of the herring when it has traveled 3 seconds.

146. The population in millions of arctic flounder in the
Atlantic Ocean is modeled by the function

where is measured in years.

a. Determine the initial flounder population.
b. Determine and briefly interpret the result.

147. [T] The concentration of antibiotic in the
bloodstream hours after being injected is given by the

function where is measured in

milligrams per liter of blood.
a. Find the rate of change of
b. Determine the rate of change for

and
c. Briefly describe what seems to be occurring as the

number of hours increases.

148. A book publisher has a cost function given by

where x is the number of copies of

a book in thousands and C is the cost, per book, measured
in dollars. Evaluate and explain its meaning.

264 Chapter 3 | Derivatives

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



149. [T] According to Newton’s law of universal
gravitation, the force between two bodies of constant

mass and is given by the formula

where is the gravitational constant and is the distance
between the bodies.

a. Suppose that are constants. Find

the rate of change of force with respect to
distance

b. Find the rate of change of force with

gravitational constant

on two bodies 10 meters apart, each

with a mass of 1000 kilograms.
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3.4 | Derivatives as Rates of Change

Learning Objectives
3.4.1 Determine a new value of a quantity from the old value and the amount of change.
3.4.2 Calculate the average rate of change and explain how it differs from the instantaneous rate
of change.
3.4.3 Apply rates of change to displacement, velocity, and acceleration of an object moving along
a straight line.
3.4.4 Predict the future population from the present value and the population growth rate.
3.4.5 Use derivatives to calculate marginal cost and revenue in a business situation.

In this section we look at some applications of the derivative by focusing on the interpretation of the derivative as the rate of
change of a function. These applications include acceleration and velocity in physics, population growth rates in biology,
and marginal functions in economics.

Amount of Change Formula
One application for derivatives is to estimate an unknown value of a function at a point by using a known value of a
function at some given point together with its rate of change at the given point. If is a function defined on an interval

then the amount of change of over the interval is the change in the values of the function over that

interval and is given by

The average rate of change of the function over that same interval is the ratio of the amount of change over that interval

to the corresponding change in the values. It is given by

As we already know, the instantaneous rate of change of at is its derivative

For small enough values of We can then solve for to get the amount of change

formula:

(3.10)

We can use this formula if we know only and and wish to estimate the value of For example, we

may use the current population of a city and the rate at which it is growing to estimate its population in the near future. As
we can see in Figure 3.22, we are approximating by the coordinate at on the line tangent to at

Observe that the accuracy of this estimate depends on the value of as well as the value of
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3.21

Figure 3.22 The new value of a changed quantity equals the
original value plus the rate of change times the interval of
change:

Here is an interesting demonstration (http://www.openstax.org/l/20_chainrule) of rate of change.

Example 3.33

Estimating the Value of a Function

If and estimate

Solution
Begin by finding We have Thus,

Given and estimate

Motion along a Line
Another use for the derivative is to analyze motion along a line. We have described velocity as the rate of change of position.
If we take the derivative of the velocity, we can find the acceleration, or the rate of change of velocity. It is also important to
introduce the idea of speed, which is the magnitude of velocity. Thus, we can state the following mathematical definitions.

Definition

Let be a function giving the position of an object at time

The velocity of the object at time is given by

The speed of the object at time is given by

The acceleration of the object at is given by
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Example 3.34

Comparing Instantaneous Velocity and Average Velocity

A ball is dropped from a height of 64 feet. Its height above ground (in feet) seconds later is given by

a. What is the instantaneous velocity of the ball when it hits the ground?

b. What is the average velocity during its fall?

Solution
The first thing to do is determine how long it takes the ball to reach the ground. To do this, set Solving

we get so it take 2 seconds for the ball to reach the ground.

a. The instantaneous velocity of the ball as it strikes the ground is Since we
obtain

b. The average velocity of the ball during its fall is

Example 3.35

Interpreting the Relationship between and

A particle moves along a coordinate axis in the positive direction to the right. Its position at time is given by

Find and and use these values to answer the following questions.

a. Is the particle moving from left to right or from right to left at time

b. Is the particle speeding up or slowing down at time

Solution
Begin by finding and
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and

Evaluating these functions at we obtain and

a. Because the particle is moving from right to left.

b. Because and velocity and acceleration are acting in opposite directions. In other
words, the particle is being accelerated in the direction opposite the direction in which it is traveling,
causing to decrease. The particle is slowing down.

Example 3.36

Position and Velocity

The position of a particle moving along a coordinate axis is given by

a. Find

b. At what time(s) is the particle at rest?

c. On what time intervals is the particle moving from left to right? From right to left?

d. Use the information obtained to sketch the path of the particle along a coordinate axis.

Solution
a. The velocity is the derivative of the position function:

b. The particle is at rest when so set Factoring the left-hand side of the
equation produces Solving, we find that the particle is at rest at and

c. The particle is moving from left to right when and from right to left when Figure
3.23 gives the analysis of the sign of for but it does not represent the axis along which the
particle is moving.

Figure 3.23 The sign of v(t) determines the direction of the
particle.

Since on the particle is moving from left to right on these
intervals.
Since on the particle is moving from right to left on this interval.

d. Before we can sketch the graph of the particle, we need to know its position at the time it starts
moving and at the times that it changes direction We have and

This means that the particle begins on the coordinate axis at 4 and changes direction at 0 and
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3.22

3.23

20 on the coordinate axis. The path of the particle is shown on a coordinate axis in Figure 3.24.

Figure 3.24 The path of the particle can be determined by
analyzing v(t).

A particle moves along a coordinate axis. Its position at time is given by Is the

particle moving from right to left or from left to right at time

Population Change
In addition to analyzing velocity, speed, acceleration, and position, we can use derivatives to analyze various types of
populations, including those as diverse as bacteria colonies and cities. We can use a current population, together with a
growth rate, to estimate the size of a population in the future. The population growth rate is the rate of change of a population
and consequently can be represented by the derivative of the size of the population.

Definition

If is the number of entities present in a population, then the population growth rate of is defined to be

Example 3.37

Estimating a Population

The population of a city is tripling every 5 years. If its current population is 10,000, what will be its approximate
population 2 years from now?

Solution
Let be the population (in thousands) years from now. Thus, we know that and based on the
information, we anticipate Now estimate the current growth rate, using

By applying Equation 3.10 to we can estimate the population 2 years from now by writing

thus, in 2 years the population will be 18,000.

The current population of a mosquito colony is known to be 3,000; that is, If

estimate the size of the population in 3 days, where is measured in days.
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Changes in Cost and Revenue
In addition to analyzing motion along a line and population growth, derivatives are useful in analyzing changes in cost,
revenue, and profit. The concept of a marginal function is common in the fields of business and economics and implies the
use of derivatives. The marginal cost is the derivative of the cost function. The marginal revenue is the derivative of the
revenue function. The marginal profit is the derivative of the profit function, which is based on the cost function and the
revenue function.

Definition

If is the cost of producing x items, then the marginal cost is

If is the revenue obtained from selling items, then the marginal revenue is

If is the profit obtained from selling x items, then the marginal profit is defined to be

We can roughly approximate

by choosing an appropriate value for Since x represents objects, a reasonable and small value for is 1. Thus, by
substituting we get the approximation Consequently, for a given
value of can be thought of as the change in cost associated with producing one additional item. In a similar way,

approximates the revenue obtained by selling one additional item, and approximates the
profit obtained by producing and selling one additional item.

Example 3.38

Applying Marginal Revenue

Assume that the number of barbeque dinners that can be sold, can be related to the price charged, by the

equation

In this case, the revenue in dollars obtained by selling barbeque dinners is given by

Use the marginal revenue function to estimate the revenue obtained from selling the 101st barbeque dinner.
Compare this to the actual revenue obtained from the sale of this dinner.

Solution
First, find the marginal revenue function:

Next, use to approximate the revenue obtained from the sale of the 101st dinner.
Since the revenue obtained from the sale of the 101st dinner is approximately $3.

The actual revenue obtained from the sale of the 101st dinner is

The marginal revenue is a fairly good estimate in this case and has the advantage of being easy to compute.
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3.24 Suppose that the profit obtained from the sale of fish-fry dinners is given by

Use the marginal profit function to estimate the profit from the sale of the 101st

fish-fry dinner.
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3.4 EXERCISES
For the following exercises, the given functions represent
the position of a particle traveling along a horizontal line.

a. Find the velocity and acceleration functions.

b. Determine the time intervals when the object is
slowing down or speeding up.

150.

151.

152.

153. A rocket is fired vertically upward from the ground.
The distance in feet that the rocket travels from the

ground after seconds is given by
a. Find the velocity of the rocket 3 seconds after being

fired.
b. Find the acceleration of the rocket 3 seconds after

being fired.

154. A ball is thrown downward with a speed of 8 ft/
s from the top of a 64-foot-tall building. After t seconds,
its height above the ground is given by

a. Determine how long it takes for the ball to hit the
ground.

b. Determine the velocity of the ball when it hits the
ground.

155. The position function represents
the position of the back of a car backing out of a driveway
and then driving in a straight line, where is in feet and

is in seconds. In this case, represents the time
at which the back of the car is at the garage door, so

is the starting position of the car, 4 feet inside
the garage.

a. Determine the velocity of the car when
b. Determine the velocity of the car when

156. The position of a hummingbird flying along a straight
line in seconds is given by meters.

a. Determine the velocity of the bird at sec.
b. Determine the acceleration of the bird at sec.
c. Determine the acceleration of the bird when the

velocity equals 0.

157. A potato is launched vertically upward with an initial
velocity of 100 ft/s from a potato gun at the top of an
85-foot-tall building. The distance in feet that the potato
travels from the ground after seconds is given by

a. Find the velocity of the potato after and

b. Find the speed of the potato at 0.5 s and 5.75 s.
c. Determine when the potato reaches its maximum

height.
d. Find the acceleration of the potato at 0.5 s and 1.5

s.
e. Determine how long the potato is in the air.
f. Determine the velocity of the potato upon hitting

the ground.

158. The position function gives the
position in miles of a freight train where east is the positive
direction and is measured in hours.

a. Determine the direction the train is traveling when

b. Determine the direction the train is traveling when

c. Determine the time intervals when the train is
slowing down or speeding up.

159. The following graph shows the position of

an object moving along a straight line.

a. Use the graph of the position function to determine
the time intervals when the velocity is positive,
negative, or zero.

b. Sketch the graph of the velocity function.
c. Use the graph of the velocity function to determine

the time intervals when the acceleration is positive,
negative, or zero.

d. Determine the time intervals when the object is
speeding up or slowing down.
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160. The cost function, in dollars, of a company that
manufactures food processors is given by

where is the number of food

processors manufactured.
a. Find the marginal cost function.
b. Use the marginal cost function to estimate the cost

of manufacturing the thirteenth food processor.
c. Find the actual cost of manufacturing the thirteenth

food processor.

161. The price (in dollars) and the demand for a

certain digital clock radio is given by the price–demand
function

a. Find the revenue function
b. Find the marginal revenue function.
c. Find the marginal revenue at and

162. [T] A profit is earned when revenue exceeds cost.
Suppose the profit function for a skateboard manufacturer
is given by where is the
number of skateboards sold.

a. Find the exact profit from the sale of the thirtieth
skateboard.

b. Find the marginal profit function and use it to
estimate the profit from the sale of the thirtieth
skateboard.

163. [T] In general, the profit function is the difference
between the revenue and cost functions:

Suppose the price-demand and cost
functions for the production of cordless drills is given
respectively by and

where is the number of
cordless drills that are sold at a price of dollars per drill

and is the cost of producing cordless drills.
a. Find the marginal cost function.
b. Find the revenue and marginal revenue functions.
c. Find and Interpret the

results.
d. Find the profit and marginal profit functions.
e. Find and Interpret the

results.

164. A small town in Ohio commissioned an actuarial
firm to conduct a study that modeled the rate of change
of the town’s population. The study found that the town’s
population (measured in thousands of people) can be
modeled by the function

where is measured in years.
a. Find the rate of change function of the

population function.
b. Find and Interpret

what the results mean for the town.
c. Find and Interpret

what the results mean for the town’s population.

165. [T] A culture of bacteria grows in number according

to the function where is

measured in hours.
a. Find the rate of change of the number of bacteria.
b. Find and
c. Interpret the results in (b).
d. Find and

Interpret what the answers imply about the bacteria
population growth.

166. The centripetal force of an object of mass is given

by where is the speed of rotation and

is the distance from the center of rotation.
a. Find the rate of change of centripetal force with

respect to the distance from the center of rotation.
b. Find the rate of change of centripetal force of an

object with mass 1000 kilograms, velocity of 13.89
m/s, and a distance from the center of rotation of
200 meters.

The following questions concern the population (in
millions) of London by decade in the 19th century, which is
listed in the following table.
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Years since 1800 Population (millions)

1 0.8795

11 1.040

21 1.264

31 1.516

41 1.661

51 2.000

61 2.634

71 3.272

81 3.911

91 4.422

Table 3.4 Population of London Source:
http://en.wikipedia.org/wiki/
Demographics_of_London.

167. [T]
a. Using a calculator or a computer program, find the

best-fit linear function to measure the population.
b. Find the derivative of the equation in a. and explain

its physical meaning.
c. Find the second derivative of the equation and

explain its physical meaning.

168. [T]
a. Using a calculator or a computer program, find the

best-fit quadratic curve through the data.
b. Find the derivative of the equation and explain its

physical meaning.
c. Find the second derivative of the equation and

explain its physical meaning.

For the following exercises, consider an astronaut on a
large planet in another galaxy. To learn more about the
composition of this planet, the astronaut drops an electronic
sensor into a deep trench. The sensor transmits its vertical
position every second in relation to the astronaut’s position.
The summary of the falling sensor data is displayed in the
following table.

Time after dropping (s) Position (m)

0 0

1 −1

2 −2

3 −5

4 −7

5 −14

169. [T]
a. Using a calculator or computer program, find the

best-fit quadratic curve to the data.
b. Find the derivative of the position function and

explain its physical meaning.
c. Find the second derivative of the position function

and explain its physical meaning.

170. [T]
a. Using a calculator or computer program, find the

best-fit cubic curve to the data.
b. Find the derivative of the position function and

explain its physical meaning.
c. Find the second derivative of the position function

and explain its physical meaning.
d. Using the result from c. explain why a cubic

function is not a good choice for this problem.

The following problems deal with the Holling type I, II,
and III equations. These equations describe the ecological
event of growth of a predator population given the amount
of prey available for consumption.

171. [T] The Holling type I equation is described by
where is the amount of prey available and

is the rate at which the predator meets the prey for
consumption.

a. Graph the Holling type I equation, given
b. Determine the first derivative of the Holling type I

equation and explain physically what the derivative
implies.

c. Determine the second derivative of the Holling type
I equation and explain physically what the
derivative implies.

d. Using the interpretations from b. and c. explain
why the Holling type I equation may not be
realistic.
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172. [T] The Holling type II equation is described by
where is the amount of prey available

and is the maximum consumption rate of the
predator.

a. Graph the Holling type II equation given
and What are the differences between the
Holling type I and II equations?

b. Take the first derivative of the Holling type II
equation and interpret the physical meaning of the
derivative.

c. Show that and interpret the meaning of

the parameter
d. Find and interpret the meaning of the second

derivative. What makes the Holling type II function
more realistic than the Holling type I function?

173. [T] The Holling type III equation is described by

where is the amount of prey available

and is the maximum consumption rate of the
predator.

a. Graph the Holling type III equation given
and What are the differences between the
Holling type II and III equations?

b. Take the first derivative of the Holling type III
equation and interpret the physical meaning of the
derivative.

c. Find and interpret the meaning of the second
derivative (it may help to graph the second
derivative).

d. What additional ecological phenomena does the
Holling type III function describe compared with
the Holling type II function?

174. [T] The populations of the snowshoe hare (in
thousands) and the lynx (in hundreds) collected over 7
years from 1937 to 1943 are shown in the following table.
The snowshoe hare is the primary prey of the lynx.

Population of snowshoe
hare (thousands)

Population of
lynx (hundreds)

20 10

55 15

65 55

95 60

Table 3.5 Snowshoe Hare and Lynx
Populations Source: http://www.biotopics.co.uk/
newgcse/predatorprey.html.

a. Graph the data points and determine which
Holling-type function fits the data best.

b. Using the meanings of the parameters and
determine values for those parameters by
examining a graph of the data. Recall that
measures what prey value results in the half-
maximum of the predator value.

c. Plot the resulting Holling-type I, II, and III
functions on top of the data. Was the result from
part a. correct?
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3.5 | Derivatives of Trigonometric Functions

Learning Objectives
3.5.1 Find the derivatives of the sine and cosine function.
3.5.2 Find the derivatives of the standard trigonometric functions.
3.5.3 Calculate the higher-order derivatives of the sine and cosine.

One of the most important types of motion in physics is simple harmonic motion, which is associated with such systems
as an object with mass oscillating on a spring. Simple harmonic motion can be described by using either sine or cosine
functions. In this section we expand our knowledge of derivative formulas to include derivatives of these and other
trigonometric functions. We begin with the derivatives of the sine and cosine functions and then use them to obtain formulas
for the derivatives of the remaining four trigonometric functions. Being able to calculate the derivatives of the sine and
cosine functions will enable us to find the velocity and acceleration of simple harmonic motion.

Derivatives of the Sine and Cosine Functions
We begin our exploration of the derivative for the sine function by using the formula to make a reasonable guess at its
derivative. Recall that for a function

Consequently, for values of very close to 0, We see that by using

By setting and using a graphing utility, we can get a graph of an approximation to the

derivative of (Figure 3.25).

Figure 3.25 The graph of the function looks a lot like a

cosine curve.

Upon inspection, the graph of appears to be very close to the graph of the cosine function. Indeed, we will show that

If we were to follow the same steps to approximate the derivative of the cosine function, we would find that
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Theorem 3.8: The Derivatives of sin x and cos x

The derivative of the sine function is the cosine and the derivative of the cosine function is the negative sine.

(3.11)

(3.12)

Proof

Because the proofs for and use similar techniques, we provide only the proof for

Before beginning, recall two important trigonometric limits we learned in Introduction to Limits:

The graphs of and are shown in Figure 3.26.

Figure 3.26 These graphs show two important limits needed to establish the derivative formulas for the
sine and cosine functions.

We also recall the following trigonometric identity for the sine of the sum of two angles:

Now that we have gathered all the necessary equations and identities, we proceed with the proof.
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3.25

□

Figure 3.27 shows the relationship between the graph of and its derivative Notice that at the

points where has a horizontal tangent, its derivative takes on the value zero. We also see that

where is increasing, and where is decreasing,

Figure 3.27 Where has a maximum or a minimum,

that is, where has a horizontal

tangent. These points are noted with dots on the graphs.

Example 3.39

Differentiating a Function Containing sin x

Find the derivative of

Solution
Using the product rule, we have

After simplifying, we obtain

Find the derivative of

Example 3.40

Finding the Derivative of a Function Containing cos x
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3.26

3.27

Find the derivative of

Solution
By applying the quotient rule, we have

Simplifying, we obtain

Find the derivative of

Example 3.41

An Application to Velocity

A particle moves along a coordinate axis in such a way that its position at time is given by
for At what times is the particle at rest?

Solution
To determine when the particle is at rest, set Begin by finding We obtain

so we must solve

The solutions to this equation are and Thus the particle is at rest at times and

A particle moves along a coordinate axis. Its position at time is given by for

At what times is the particle at rest?

Derivatives of Other Trigonometric Functions
Since the remaining four trigonometric functions may be expressed as quotients involving sine, cosine, or both, we can use
the quotient rule to find formulas for their derivatives.
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3.28

Example 3.42

The Derivative of the Tangent Function

Find the derivative of

Solution
Start by expressing as the quotient of and

Now apply the quotient rule to obtain

Simplifying, we obtain

Recognizing that by the Pythagorean theorem, we now have

Finally, use the identity to obtain

Find the derivative of

The derivatives of the remaining trigonometric functions may be obtained by using similar techniques. We provide these
formulas in the following theorem.

Theorem 3.9: Derivatives of and

The derivatives of the remaining trigonometric functions are as follows:

(3.13)

(3.14)

(3.15)

(3.16)

Example 3.43
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3.29

Finding the Equation of a Tangent Line

Find the equation of a line tangent to the graph of at

Solution
To find the equation of the tangent line, we need a point and a slope at that point. To find the point, compute

Thus the tangent line passes through the point Next, find the slope by finding the derivative of

and evaluating it at

Using the point-slope equation of the line, we obtain

or equivalently,

Example 3.44

Finding the Derivative of Trigonometric Functions

Find the derivative of

Solution
To find this derivative, we must use both the sum rule and the product rule. Using the sum rule, we find

In the first term, and by applying the product rule to the second term we obtain

Therefore, we have

Find the derivative of
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3.30

3.31

Find the slope of the line tangent to the graph of at

Higher-Order Derivatives
The higher-order derivatives of and follow a repeating pattern. By following the pattern, we can find any
higher-order derivative of and

Example 3.45

Finding Higher-Order Derivatives of

Find the first four derivatives of

Solution
Each step in the chain is straightforward:

Analysis
Once we recognize the pattern of derivatives, we can find any higher-order derivative by determining the step in
the pattern to which it corresponds. For example, every fourth derivative of sin x equals sin x, so

For find

Example 3.46

Using the Pattern for Higher-Order Derivatives of

Find
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3.32

3.33

Solution
We can see right away that for the 74th derivative of so

For find

Example 3.47

An Application to Acceleration

A particle moves along a coordinate axis in such a way that its position at time is given by
Find and Compare these values and decide whether the particle is speeding up or slowing down.

Solution
First find

Thus,

Next, find Thus, and we have

Since and we see that velocity and acceleration are acting in opposite

directions; that is, the object is being accelerated in the direction opposite to the direction in which it is travelling.
Consequently, the particle is slowing down.

A block attached to a spring is moving vertically. Its position at time is given by Find

and Compare these values and decide whether the block is speeding up or slowing down.

284 Chapter 3 | Derivatives

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



3.5 EXERCISES
For the following exercises, find for the given

functions.

175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

For the following exercises, find the equation of the tangent
line to each of the given functions at the indicated values
of Then use a calculator to graph both the function and
the tangent line to ensure the equation for the tangent line
is correct.

185. [T]

186. [T]

187. [T]

188. [T]

189. [T]

190. [T]

For the following exercises, find for the given

functions.

191.

192.

193.

194.

195.

196.

197. Find all values on the graph of
where the tangent line is horizontal.

198. Find all values on the graph of

for where the tangent line has slope 2.

199. Let Determine the points on the graph

of for where the tangent line(s) is (are)

parallel to the line

200. [T] A mass on a spring bounces up and down in
simple harmonic motion, modeled by the function

where is measured in inches and is
measured in seconds. Find the rate at which the spring is
oscillating at s.

201. Let the position of a swinging pendulum in simple
harmonic motion be given by where

and are constants, measures time in seconds, and
measures position in centimeters. If the position is 0 cm

and the velocity is 3 cm/s when , find the values of
and .

202. After a diver jumps off a diving board, the edge of
the board oscillates with position given by
cm at seconds after the jump.

a. Sketch one period of the position function for

b. Find the velocity function.
c. Sketch one period of the velocity function for

d. Determine the times when the velocity is 0 over one
period.

e. Find the acceleration function.
f. Sketch one period of the acceleration function for
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203. The number of hamburgers sold at a fast-food
restaurant in Pasadena, California, is given by

where is the number of hamburgers

sold and represents the number of hours after the
restaurant opened at 11 a.m. until 11 p.m., when the store
closes. Find and determine the intervals where the

number of burgers being sold is increasing.

204. [T] The amount of rainfall per month in Phoenix,
Arizona, can be approximated by

where is months since January. Find and use a

calculator to determine the intervals where the amount of
rain falling is decreasing.

For the following exercises, use the quotient rule to derive
the given equations.

205.

206.

207.

208. Use the definition of derivative and the identity
to prove that

For the following exercises, find the requested higher-order
derivative for the given functions.

209. of

210. of

211. of

212. of

213. of
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3.6 | The Chain Rule

Learning Objectives
3.6.1 State the chain rule for the composition of two functions.
3.6.2 Apply the chain rule together with the power rule.
3.6.3 Apply the chain rule and the product/quotient rules correctly in combination when both are
necessary.
3.6.4 Recognize the chain rule for a composition of three or more functions.
3.6.5 Describe the proof of the chain rule.

We have seen the techniques for differentiating basic functions as well as sums, differences,
products, quotients, and constant multiples of these functions. However, these techniques do not allow us to differentiate

compositions of functions, such as or In this section, we study the rule for finding the

derivative of the composition of two or more functions.

Deriving the Chain Rule
When we have a function that is a composition of two or more functions, we could use all of the techniques we have already
learned to differentiate it. However, using all of those techniques to break down a function into simpler parts that we are
able to differentiate can get cumbersome. Instead, we use the chain rule, which states that the derivative of a composite
function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function.

To put this rule into context, let’s take a look at an example: We can think of the derivative of this function

with respect to x as the rate of change of relative to the change in Consequently, we want to know how

changes as changes. We can think of this event as a chain reaction: As changes, changes, which leads to a change

in This chain reaction gives us hints as to what is involved in computing the derivative of First of all, a

change in forcing a change in suggests that somehow the derivative of is involved. In addition, the change in

forcing a change in suggests that the derivative of with respect to where is also part of the

final derivative.

We can take a more formal look at the derivative of by setting up the limit that would give us the derivative

at a specific value in the domain of

This expression does not seem particularly helpful; however, we can modify it by multiplying and dividing by the
expression to obtain

From the definition of the derivative, we can see that the second factor is the derivative of at That is,

However, it might be a little more challenging to recognize that the first term is also a derivative. We can see this by letting
and observing that as
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Thus,

In other words, if then Thus, if we think of as the composition

where sin and then the derivative of is the product of the

derivative of and the derivative of the function evaluated at the function At this point,

we anticipate that for it is quite likely that As we determined above, this is the

case for

Now that we have derived a special case of the chain rule, we state the general case and then apply it in a general form to
other composite functions. An informal proof is provided at the end of the section.

Rule: The Chain Rule

Let and be functions. For all x in the domain of for which is differentiable at x and is differentiable at

the derivative of the composite function

is given by

(3.17)

Alternatively, if is a function of and is a function of then

Watch an animation (http://www.openstax.org/l/20_chainrule2) of the chain rule.

Problem-Solving Strategy: Applying the Chain Rule

1. To differentiate begin by identifying and

2. Find and evaluate it at to obtain

3. Find

4. Write

Note: When applying the chain rule to the composition of two or more functions, keep in mind that we work our way
from the outside function in. It is also useful to remember that the derivative of the composition of two functions can
be thought of as having two parts; the derivative of the composition of three functions has three parts; and so on. Also,
remember that we never evaluate a derivative at a derivative.
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3.34

The Chain and Power Rules Combined
We can now apply the chain rule to composite functions, but note that we often need to use it with other rules. For example,
to find derivatives of functions of the form we need to use the chain rule combined with the power rule. To

do so, we can think of as where Then Thus,

This leads us to the derivative of a power function using the chain rule,

Rule: Power Rule for Composition of Functions

For all values of x for which the derivative is defined, if

Then

(3.18)

Example 3.48

Using the Chain and Power Rules

Find the derivative of

Solution

First, rewrite

Applying the power rule with we have

Rewriting back to the original form gives us

Find the derivative of

Example 3.49

Using the Chain and Power Rules with a Trigonometric Function

Find the derivative of
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3.35

Solution

First recall that so we can rewrite as

Applying the power rule with we obtain

Example 3.50

Finding the Equation of a Tangent Line

Find the equation of a line tangent to the graph of at

Solution
Because we are finding an equation of a line, we need a point. The x-coordinate of the point is 2. To find the
y-coordinate, substitute 2 into Since the point is

For the slope, we need To find first we rewrite and apply the power rule to
obtain

By substituting, we have Therefore, the line has equation

Rewriting, the equation of the line is

Find the equation of the line tangent to the graph of at

Combining the Chain Rule with Other Rules
Now that we can combine the chain rule and the power rule, we examine how to combine the chain rule with the other rules
we have learned. In particular, we can use it with the formulas for the derivatives of trigonometric functions or with the
product rule.

Example 3.51

Using the Chain Rule on a General Cosine Function

Find the derivative of

Solution
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3.36

Think of as where Since we have

Then we do the following calculation.

Thus, the derivative of is given by

In the following example we apply the rule that we have just derived.

Example 3.52

Using the Chain Rule on a Cosine Function

Find the derivative of

Solution

Let Then Using the result from the previous example,

Example 3.53

Using the Chain Rule on Another Trigonometric Function

Find the derivative of

Solution
Apply the chain rule to to obtain

In this problem, so we have Therefore, we obtain

Find the derivative of
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3.37

At this point we provide a list of derivative formulas that may be obtained by applying the chain rule in conjunction
with the formulas for derivatives of trigonometric functions. Their derivations are similar to those used in Example 3.51
and Example 3.53. For convenience, formulas are also given in Leibniz’s notation, which some students find easier to
remember. (We discuss the chain rule using Leibniz’s notation at the end of this section.) It is not absolutely necessary to
memorize these as separate formulas as they are all applications of the chain rule to previously learned formulas.

Theorem 3.10: Using the Chain Rule with Trigonometric Functions

For all values of for which the derivative is defined,

Example 3.54

Combining the Chain Rule with the Product Rule

Find the derivative of

Solution
First apply the product rule, then apply the chain rule to each term of the product.

Find the derivative of

Composites of Three or More Functions
We can now combine the chain rule with other rules for differentiating functions, but when we are differentiating the
composition of three or more functions, we need to apply the chain rule more than once. If we look at this situation in
general terms, we can generate a formula, but we do not need to remember it, as we can simply apply the chain rule multiple
times.

In general terms, first we let
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3.38

Then, applying the chain rule once we obtain

Applying the chain rule again, we obtain

Rule: Chain Rule for a Composition of Three Functions

For all values of x for which the function is differentiable, if

then

In other words, we are applying the chain rule twice.

Notice that the derivative of the composition of three functions has three parts. (Similarly, the derivative of the composition
of four functions has four parts, and so on.) Also, remember, we can always work from the outside in, taking one derivative
at a time.

Example 3.55

Differentiating a Composite of Three Functions

Find the derivative of

Solution
First, rewrite as

Then apply the chain rule several times.

Find the derivative of

Example 3.56
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Using the Chain Rule in a Velocity Problem

A particle moves along a coordinate axis. Its position at time t is given by What is the

velocity of the particle at time

Solution
To find the velocity of the particle at time we must differentiate Thus,

Substituting into we obtain

A particle moves along a coordinate axis. Its position at time is given by Find its

acceleration at time

Proof
At this point, we present a very informal proof of the chain rule. For simplicity’s sake we ignore certain issues: For example,
we assume that for in some open interval containing We begin by applying the limit definition of

the derivative to the function to obtain

Rewriting, we obtain

Although it is clear that

it is not obvious that

To see that this is true, first recall that since g is differentiable at is also continuous at Thus,

Next, make the substitution and and use change of variables in the limit to obtain

Finally,

□
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Example 3.57

Using the Chain Rule with Functional Values

Let If and find

Solution
Use the chain rule, then substitute.

Given If and find

The Chain Rule Using Leibniz’s Notation
As with other derivatives that we have seen, we can express the chain rule using Leibniz’s notation. This notation for the
chain rule is used heavily in physics applications.

let and Thus,

Consequently,

Rule: Chain Rule Using Leibniz’s Notation

If is a function of and is a function of then

Example 3.58

Taking a Derivative Using Leibniz’s Notation, Example 1

Find the derivative of

Solution

First, let Thus, Next, find and Using the quotient rule,
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and

Finally, we put it all together.

It is important to remember that, when using the Leibniz form of the chain rule, the final answer must be
expressed entirely in terms of the original variable given in the problem.

Example 3.59

Taking a Derivative Using Leibniz’s Notation, Example 2

Find the derivative of

Solution

First, let Then Next, find and

Finally, we put it all together.

Use Leibniz’s notation to find the derivative of Make sure that the final answer is

expressed entirely in terms of the variable
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3.6 EXERCISES
For the following exercises, given and

find by using Leibniz’s notation for the

chain rule:

214.

215.

216.

217.

218.

219.

For each of the following exercises,

a. decompose each function in the form

and and

b. find as a function of

220.

221.

222.

223.

224.

225.

226.

227.

For the following exercises, find for each function.

228.

229.

230.

231.

232.

233.

234.

235.

236.

237.

238. Let and suppose that and

for Find

239. Let and suppose that

and when Find

240. Let and If

and when find

241. [T] Find the equation of the tangent line to

at the origin. Use a calculator to graph the

function and the tangent line together.

242. [T] Find the equation of the tangent line to

at the point Use a calculator to

graph the function and the tangent line together.

243. Find the -coordinates at which the tangent line to

is horizontal.

244. [T] Find an equation of the line that is normal to

at the point Use a calculator to

graph the function and the normal line together.

For the following exercises, use the information in the
following table to find at the given value for
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0 2 5 0 2

1 1 −2 3 0

2 4 4 1 −1

3 3 −3 2 3

245.

246.

247.

248.

249.

250.

251.

252.

253. [T] The position function of a freight train is given by
with in meters and in seconds.

At time s, find the train’s
a. velocity and
b. acceleration.
c. Using a. and b. is the train speeding up or slowing

down?

254. [T] A mass hanging from a vertical spring is in
simple harmonic motion as given by the following position
function, where is measured in seconds and is in

inches:

a. Determine the position of the spring at s.
b. Find the velocity of the spring at s.

255. [T] The total cost to produce boxes of Thin Mint
Girl Scout cookies is dollars, where

In weeks
production is estimated to be boxes.

a. Find the marginal cost
b. Use Leibniz’s notation for the chain rule,

to find the rate with respect to

time that the cost is changing.
c. Use b. to determine how fast costs are increasing

when weeks. Include units with the answer.

256. [T] The formula for the area of a circle is
where is the radius of the circle. Suppose a circle is
expanding, meaning that both the area and the radius
(in inches) are expanding.

a. Suppose where is time in

seconds. Use the chain rule to find

the rate at which the area is expanding.
b. Use a. to find the rate at which the area is

expanding at s.

257. [T] The formula for the volume of a sphere is
where (in feet) is the radius of the sphere.

Suppose a spherical snowball is melting in the sun.
a. Suppose where is time in

minutes. Use the chain rule to find

the rate at which the snowball is melting.
b. Use a. to find the rate at which the volume is

changing at min.

258. [T] The daily temperature in degrees Fahrenheit of
Phoenix in the summer can be modeled by the function

where is hours after

midnight. Find the rate at which the temperature is
changing at 4 p.m.

259. [T] The depth (in feet) of water at a dock changes
with the rise and fall of tides. The depth is modeled by

the function where is the

number of hours after midnight. Find the rate at which the
depth is changing at 6 a.m.
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3.7 | Derivatives of Inverse Functions

Learning Objectives
3.7.1 Calculate the derivative of an inverse function.
3.7.2 Recognize the derivatives of the standard inverse trigonometric functions.

In this section we explore the relationship between the derivative of a function and the derivative of its inverse. For functions
whose derivatives we already know, we can use this relationship to find derivatives of inverses without having to use the
limit definition of the derivative. In particular, we will apply the formula for derivatives of inverse functions to trigonometric
functions. This formula may also be used to extend the power rule to rational exponents.

The Derivative of an Inverse Function
We begin by considering a function and its inverse. If is both invertible and differentiable, it seems reasonable that

the inverse of is also differentiable. Figure 3.28 shows the relationship between a function and its inverse

Look at the point on the graph of having a tangent line with a slope of This

point corresponds to a point on the graph of having a tangent line with a slope of

Thus, if is differentiable at then it must be the case that

Figure 3.28 The tangent lines of a function and its inverse are
related; so, too, are the derivatives of these functions.

We may also derive the formula for the derivative of the inverse by first recalling that Then by

differentiating both sides of this equation (using the chain rule on the right), we obtain

Solving for we obtain

(3.19)

We summarize this result in the following theorem.
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Theorem 3.11: Inverse Function Theorem

Let be a function that is both invertible and differentiable. Let be the inverse of For all

satisfying

Alternatively, if is the inverse of then

Example 3.60

Applying the Inverse Function Theorem

Use the inverse function theorem to find the derivative of Compare the resulting derivative to that

obtained by differentiating the function directly.

Solution

The inverse of is Since begin by finding Thus,

Finally,

We can verify that this is the correct derivative by applying the quotient rule to to obtain

Use the inverse function theorem to find the derivative of Compare the result obtained

by differentiating directly.

Example 3.61

Applying the Inverse Function Theorem

Use the inverse function theorem to find the derivative of
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Solution

The function is the inverse of the function Since begin by finding

Thus,

Finally,

Find the derivative of by applying the inverse function theorem.

From the previous example, we see that we can use the inverse function theorem to extend the power rule to exponents of
the form where is a positive integer. This extension will ultimately allow us to differentiate where is any

rational number.

Theorem 3.12: Extending the Power Rule to Rational Exponents

The power rule may be extended to rational exponents. That is, if is a positive integer, then

(3.20)

Also, if is a positive integer and is an arbitrary integer, then

(3.21)

Proof

The function is the inverse of the function Since begin by finding

Thus,

Finally,

To differentiate we must rewrite it as and apply the chain rule. Thus,

□
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Example 3.62

Applying the Power Rule to a Rational Power

Find the equation of the line tangent to the graph of at

Solution

First find and evaluate it at Since

the slope of the tangent line to the graph at is

Substituting into the original function, we obtain Thus, the tangent line passes through the point

Substituting into the point-slope formula for a line, we obtain the tangent line

Find the derivative of

Derivatives of Inverse Trigonometric Functions
We now turn our attention to finding derivatives of inverse trigonometric functions. These derivatives will prove invaluable
in the study of integration later in this text. The derivatives of inverse trigonometric functions are quite surprising in that
their derivatives are actually algebraic functions. Previously, derivatives of algebraic functions have proven to be algebraic
functions and derivatives of trigonometric functions have been shown to be trigonometric functions. Here, for the first time,
we see that the derivative of a function need not be of the same type as the original function.

Example 3.63

Derivative of the Inverse Sine Function

Use the inverse function theorem to find the derivative of

Solution

Since for in the interval is the inverse of begin by finding

Since

we see that
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Analysis

To see that consider the following argument. Set In this case,

where We begin by considering the case where Since is an acute angle, we may

construct a right triangle having acute angle a hypotenuse of length and the side opposite angle having

length From the Pythagorean theorem, the side adjacent to angle has length This triangle is

shown in Figure 3.29. Using the triangle, we see that

Figure 3.29 Using a right triangle having acute angle a

hypotenuse of length and the side opposite angle having

length we can see that

In the case where we make the observation that and hence

Now if or or and since in either case and we have

Finally, if , and .

Consequently, in all cases,

Example 3.64

Applying the Chain Rule to the Inverse Sine Function

Apply the chain rule to the formula derived in Example 3.61 to find the derivative of and

use this result to find the derivative of

Solution

Applying the chain rule to we have
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Now let so Substituting into the previous result, we obtain

Use the inverse function theorem to find the derivative of

The derivatives of the remaining inverse trigonometric functions may also be found by using the inverse function theorem.
These formulas are provided in the following theorem.

Theorem 3.13: Derivatives of Inverse Trigonometric Functions

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

Example 3.65

Applying Differentiation Formulas to an Inverse Tangent Function

Find the derivative of

Solution

Let so Substituting into Equation 3.24, we obtain

Simplifying, we have
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3.47

Example 3.66

Applying Differentiation Formulas to an Inverse Sine Function

Find the derivative of

Solution
By applying the product rule, we have

Find the derivative of

Example 3.67

Applying the Inverse Tangent Function

The position of a particle at time is given by for Find the velocity of the particle at

time

Solution
Begin by differentiating in order to find Thus,

Simplifying, we have

Thus,

Find the equation of the line tangent to the graph of at
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3.7 EXERCISES
For the following exercises, use the graph of to

a. sketch the graph of and

b. use part a. to estimate

260.

261.

262.

263.

For the following exercises, use the functions to

find

a. at and

b.

c. Then use part b. to find at

264.

265.

266.

267.

For each of the following functions, find

268.

269.

270.

271.

272.

273.

For each of the given functions

a. find the slope of the tangent line to its inverse
function at the indicated point and
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b. find the equation of the tangent line to the graph of
at the indicated point.

274.

275.

276.

277.

278.

For the following exercises, find for the given

function.

279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

For the following exercises, use the given values to find

289.

290.

291.

292.

293.

294.

295. [T] The position of a moving hockey puck after

seconds is where is in meters.
a. Find the velocity of the hockey puck at any time
b. Find the acceleration of the puck at any time
c. Evaluate a. and b. for and seconds.
d. What conclusion can be drawn from the results in

c.?

296. [T] A building that is 225 feet tall casts a shadow
of various lengths as the day goes by. An angle of
elevation is formed by lines from the top and bottom
of the building to the tip of the shadow, as seen in the
following figure. Find the rate of change of the angle of
elevation when feet.

297. [T] A pole stands 75 feet tall. An angle is formed
when wires of various lengths of feet are attached from
the ground to the top of the pole, as shown in the following
figure. Find the rate of change of the angle when a wire

of length 90 feet is attached.
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298. [T] A television camera at ground level is 2000 feet
away from the launching pad of a space rocket that is
set to take off vertically, as seen in the following figure.
The angle of elevation of the camera can be found by

where is the height of the rocket.

Find the rate of change of the angle of elevation after
launch when the camera and the rocket are 5000 feet apart.

299. [T] A local movie theater with a 30-foot-high screen
that is 10 feet above a person’s eye level when seated
has a viewing angle (in radians) given by

where is the distance in

feet away from the movie screen that the person is sitting,
as shown in the following figure.

a. Find

b. Evaluate for and 20.

c. Interpret the results in b..
d. Evaluate for and 40

e. Interpret the results in d. At what distance should
the person stand to maximize his or her viewing
angle?
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3.8 | Implicit Differentiation

Learning Objectives
3.8.1 Find the derivative of a complicated function by using implicit differentiation.
3.8.2 Use implicit differentiation to determine the equation of a tangent line.

We have already studied how to find equations of tangent lines to functions and the rate of change of a function at a specific
point. In all these cases we had the explicit equation for the function and differentiated these functions explicitly. Suppose
instead that we want to determine the equation of a tangent line to an arbitrary curve or the rate of change of an arbitrary
curve at a point. In this section, we solve these problems by finding the derivatives of functions that define implicitly in

terms of

Implicit Differentiation
In most discussions of math, if the dependent variable is a function of the independent variable we express y in terms

of If this is the case, we say that is an explicit function of For example, when we write the equation

we are defining y explicitly in terms of On the other hand, if the relationship between the function and the variable

is expressed by an equation where is not expressed entirely in terms of we say that the equation defines y implicitly

in terms of For example, the equation defines the function implicitly.

Implicit differentiation allows us to find slopes of tangents to curves that are clearly not functions (they fail the vertical line
test). We are using the idea that portions of are functions that satisfy the given equation, but that is not actually a

function of

In general, an equation defines a function implicitly if the function satisfies that equation. An equation may define many
different functions implicitly. For example, the functions

and which are illustrated in Figure 3.30, are just three of the many

functions defined implicitly by the equation
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Figure 3.30 The equation defines many functions implicitly.

If we want to find the slope of the line tangent to the graph of at the point we could evaluate

the derivative of the function at On the other hand, if we want the slope of the tangent line at the

point we could use the derivative of However, it is not always easy to solve for a function

defined implicitly by an equation. Fortunately, the technique of implicit differentiation allows us to find the derivative of

an implicitly defined function without ever solving for the function explicitly. The process of finding using implicit

differentiation is described in the following problem-solving strategy.
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Problem-Solving Strategy: Implicit Differentiation

To perform implicit differentiation on an equation that defines a function implicitly in terms of a variable use

the following steps:

1. Take the derivative of both sides of the equation. Keep in mind that y is a function of x. Consequently, whereas

because we must use the chain rule to differentiate with respect

to

2. Rewrite the equation so that all terms containing are on the left and all terms that do not contain are

on the right.

3. Factor out on the left.

4. Solve for by dividing both sides of the equation by an appropriate algebraic expression.

Example 3.68

Using Implicit Differentiation

Assuming that is defined implicitly by the equation find

Solution
Follow the steps in the problem-solving strategy.

Analysis

Note that the resulting expression for is in terms of both the independent variable and the dependent

variable Although in some cases it may be possible to express in terms of only, it is generally not

possible to do so.
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Example 3.69

Using Implicit Differentiation and the Product Rule

Assuming that is defined implicitly by the equation find

Solution

Example 3.70

Using Implicit Differentiation to Find a Second Derivative

Find if

Solution

In Example 3.68, we showed that We can take the derivative of both sides of this equation to find
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3.48

At this point we have found an expression for If we choose, we can simplify the expression further by

recalling that and making this substitution in the numerator to obtain

Find for defined implicitly by the equation

Finding Tangent Lines Implicitly
Now that we have seen the technique of implicit differentiation, we can apply it to the problem of finding equations of
tangent lines to curves described by equations.

Example 3.71

Finding a Tangent Line to a Circle

Find the equation of the line tangent to the curve at the point

Solution
Although we could find this equation without using implicit differentiation, using that method makes it much

easier. In Example 3.68, we found

The slope of the tangent line is found by substituting into this expression. Consequently, the slope of the

tangent line is

Using the point and the slope in the point-slope equation of the line, we obtain the equation

(Figure 3.31).
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Figure 3.31 The line is tangent to

at the point (3, −4).

Example 3.72

Finding the Equation of the Tangent Line to a Curve

Find the equation of the line tangent to the graph of at the point (Figure 3.32). This

curve is known as the folium (or leaf) of Descartes.

Figure 3.32 Finding the tangent line to the folium of

Descartes at
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Solution

Begin by finding

Next, substitute into to find the slope of the tangent line:

Finally, substitute into the point-slope equation of the line to obtain

Example 3.73

Applying Implicit Differentiation

In a simple video game, a rocket travels in an elliptical orbit whose path is described by the equation
The rocket can fire missiles along lines tangent to its path. The object of the game is to

destroy an incoming asteroid traveling along the positive x-axis toward If the rocket fires a missile when

it is located at where will it intersect the x-axis?

Solution
To solve this problem, we must determine where the line tangent to the graph of

at intersects the x-axis. Begin by finding implicitly.

Differentiating, we have

Solving for we have

The slope of the tangent line is The equation of the tangent line is To
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determine where the line intersects the x-axis, solve The solution is The missile

intersects the x-axis at the point

Find the equation of the line tangent to the hyperbola at the point

316 Chapter 3 | Derivatives

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



3.8 EXERCISES
For the following exercises, use implicit differentiation to

find

300.

301.

302.

303.

304.

305.

306.

307.

308.

309.

For the following exercises, find the equation of the tangent
line to the graph of the given equation at the indicated
point. Use a calculator or computer software to graph the
function and the tangent line.

310. [T]

311. [T]

312. [T]

313. [T]

314. [T]

315. [T]

316. [T] The graph of a folium of Descartes with equation
is given in the following graph.

a. Find the equation of the tangent line at the point
Graph the tangent line along with the

folium.
b. Find the equation of the normal line to the tangent

line in a. at the point

317. For the equation

a. Find the equation of the normal to the tangent line
at the point

b. At what other point does the normal line in a.
intersect the graph of the equation?

318. Find all points on the graph of

at which the tangent line is vertical.

319. For the equation

a. Find the -intercept(s).
b. Find the slope of the tangent line(s) at the

x-intercept(s).
c. What does the value(s) in b. indicate about the

tangent line(s)?

320. Find the equation of the tangent line to the graph of

the equation at the point

321. Find the equation of the tangent line to the graph of
the equation at the point

322. Find and for
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323. [T] The number of cell phones produced when
dollars is spent on labor and dollars is spent on capital

invested by a manufacturer can be modeled by the equation

a. Find and evaluate at the point

b. Interpret the result of a.

324. [T] The number of cars produced when dollars is
spent on labor and dollars is spent on capital invested

by a manufacturer can be modeled by the equation
(Both and are measured in

thousands of dollars.)

a. Find and evaluate at the point

b. Interpret the result of a.

325. The volume of a right circular cone of radius

and height is given by Suppose that the

volume of the cone is Find when and

For the following exercises, consider a closed rectangular
box with a square base with side and height

326. Find an equation for the surface area of the
rectangular box,

327. If the surface area of the rectangular box is 78 square

feet, find when feet and feet.

For the following exercises, use implicit differentiation to
determine Does the answer agree with the formulas we

have previously determined?

328.

329.

330.
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3.9 | Derivatives of Exponential and Logarithmic
Functions

Learning Objectives
3.9.1 Find the derivative of exponential functions.
3.9.2 Find the derivative of logarithmic functions.
3.9.3 Use logarithmic differentiation to determine the derivative of a function.

So far, we have learned how to differentiate a variety of functions, including trigonometric, inverse, and implicit functions.
In this section, we explore derivatives of exponential and logarithmic functions. As we discussed in Introduction to
Functions and Graphs, exponential functions play an important role in modeling population growth and the decay
of radioactive materials. Logarithmic functions can help rescale large quantities and are particularly helpful for rewriting
complicated expressions.

Derivative of the Exponential Function
Just as when we found the derivatives of other functions, we can find the derivatives of exponential and logarithmic
functions using formulas. As we develop these formulas, we need to make certain basic assumptions. The proofs that these
assumptions hold are beyond the scope of this course.

First of all, we begin with the assumption that the function is defined for every real number and is
continuous. In previous courses, the values of exponential functions for all rational numbers were defined—beginning
with the definition of where is a positive integer—as the product of multiplied by itself times. Later,

we defined for a positive integer and for positive integers and These

definitions leave open the question of the value of where is an arbitrary real number. By assuming the continuity of
we may interpret as where the values of as we take the limit are rational. For example,

we may view as the number satisfying

As we see in the following table,
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64 77.8802710486

73.5166947198 77.8810268071

77.7084726013 77.9242251944

77.8162741237 78.7932424541

77.8702309526 84.4485062895

77.8799471543 256

Table 3.6 Approximating a Value of

We also assume that for the value of the derivative exists. In this section, we show that by
making this one additional assumption, it is possible to prove that the function is differentiable everywhere.

We make one final assumption: that there is a unique value of for which We define to be this
unique value, as we did in Introduction to Functions and Graphs. Figure 3.33 provides graphs of the functions

and A visual estimate of the slopes of the tangent lines to these functions at 0

provides evidence that the value of e lies somewhere between 2.7 and 2.8. The function is called the natural
exponential function. Its inverse, is called the natural logarithmic function.
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Figure 3.33 The graph of is between and

For a better estimate of we may construct a table of estimates of for functions of the form Before
doing this, recall that

for values of very close to zero. For our estimates, we choose and to obtain the estimate

See the following table.
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Table 3.7 Estimating a Value of

The evidence from the table suggests that

The graph of together with the line are shown in Figure 3.34. This line is tangent to the graph of

at

Figure 3.34 The tangent line to at has

slope 1.

Now that we have laid out our basic assumptions, we begin our investigation by exploring the derivative of
Recall that we have assumed that exists. By applying the limit definition to the derivative we

conclude that

(3.28)

Turning to we obtain the following.
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We see that on the basis of the assumption that is differentiable at is not only differentiable everywhere,
but its derivative is

(3.29)

For Thus, we have (The value of for an arbitrary function of the form

will be derived later.)

Theorem 3.14: Derivative of the Natural Exponential Function

Let be the natural exponential function. Then

In general,

Example 3.74

Derivative of an Exponential Function

Find the derivative of

Solution
Using the derivative formula and the chain rule,

Example 3.75

Combining Differentiation Rules

Find the derivative of

Chapter 3 | Derivatives 323



3.50

3.51

Solution
Use the derivative of the natural exponential function, the quotient rule, and the chain rule.

Find the derivative of

Example 3.76

Applying the Natural Exponential Function

A colony of mosquitoes has an initial population of 1000. After days, the population is given by

Show that the ratio of the rate of change of the population, to the population, is
constant.

Solution

First find By using the chain rule, we have Thus, the ratio of the rate of change of the
population to the population is given by

The ratio of the rate of change of the population to the population is the constant 0.3.

If describes the mosquito population after days, as in the preceding example, what

is the rate of change of after 4 days?

Derivative of the Logarithmic Function
Now that we have the derivative of the natural exponential function, we can use implicit differentiation to find the derivative
of its inverse, the natural logarithmic function.

Theorem 3.15: The Derivative of the Natural Logarithmic Function

If and then

(3.30)

More generally, let be a differentiable function. For all values of for which the derivative of
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is given by

(3.31)

Proof

If and then Differentiating both sides of this equation results in the equation

Solving for yields

Finally, we substitute to obtain

We may also derive this result by applying the inverse function theorem, as follows. Since is the inverse

of by applying the inverse function theorem we have

Using this result and applying the chain rule to yields

□

The graph of and its derivative are shown in Figure 3.35.

Figure 3.35 is increasing on

Its derivative is greater than zero on

Example 3.77

Taking a Derivative of a Natural Logarithm
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3.52

Find the derivative of

Solution
Use Equation 3.31 directly.

Example 3.78

Using Properties of Logarithms in a Derivative

Find the derivative of

Solution
At first glance, taking this derivative appears rather complicated. However, by using the properties of logarithms
prior to finding the derivative, we can make the problem much simpler.

Differentiate:

Now that we can differentiate the natural logarithmic function, we can use this result to find the derivatives of

and for

Theorem 3.16: Derivatives of General Exponential and Logarithmic Functions

Let and let be a differentiable function.

i. If, then

(3.32)

More generally, if then for all values of x for which

(3.33)

ii. If then
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(3.34)

More generally, if then

(3.35)

Proof

If then It follows that Thus Solving for we have

Differentiating and keeping in mind that is a constant, we see that

The derivative in Equation 3.33 now follows from the chain rule.

If then Using implicit differentiation, again keeping in mind that is constant, it follows that

Solving for and substituting we see that

The more general derivative (Equation 3.35) follows from the chain rule.

□

Example 3.79

Applying Derivative Formulas

Find the derivative of

Solution
Use the quotient rule and Derivatives of General Exponential and Logarithmic Functions.

Example 3.80

Finding the Slope of a Tangent Line

Find the slope of the line tangent to the graph of at

Solution
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3.53

To find the slope, we must evaluate at Using Equation 3.33, we see that

By evaluating the derivative at we see that the tangent line has slope

Find the slope for the line tangent to at

Logarithmic Differentiation
At this point, we can take derivatives of functions of the form for certain values of as well as functions

of the form where and Unfortunately, we still do not know the derivatives of functions such as

or These functions require a technique called logarithmic differentiation, which allows us to differentiate

any function of the form It can also be used to convert a very complex differentiation problem into a

simpler one, such as finding the derivative of We outline this technique in the following problem-solving

strategy.

Problem-Solving Strategy: Using Logarithmic Differentiation

1. To differentiate using logarithmic differentiation, take the natural logarithm of both sides of the

equation to obtain

2. Use properties of logarithms to expand as much as possible.

3. Differentiate both sides of the equation. On the left we will have

4. Multiply both sides of the equation by to solve for

5. Replace by

Example 3.81

Using Logarithmic Differentiation

Find the derivative of
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Solution
Use logarithmic differentiation to find this derivative.

Example 3.82

Using Logarithmic Differentiation

Find the derivative of

Solution
This problem really makes use of the properties of logarithms and the differentiation rules given in this chapter.

Example 3.83

Extending the Power Rule

Find the derivative of where is an arbitrary real number.

Solution
The process is the same as in Example 3.82, though with fewer complications.
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3.54

3.55

Use logarithmic differentiation to find the derivative of

Find the derivative of
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3.9 EXERCISES
For the following exercises, find for each function.

331.

332.

333.

334.

335.

336.

337.

338.

339.

340.

341.

342.

343.

344.

345.

For the following exercises, use logarithmic differentiation

to find

346.

347.

348.

349.

350.

351.

352.

353.

354. [T] Find an equation of the tangent line to the graph

of at the point where Graph

both the function and the tangent line.

355. [T] Find the equation of the line that is normal to the
graph of at the point where Graph

both the function and the normal line.

356. [T] Find the equation of the tangent line to the graph
of at the point where

(Hint: Use implicit differentiation to find Graph both

the curve and the tangent line.

357. Consider the function for

a. Determine the points on the graph where the
tangent line is horizontal.

b. Determine the points on the graph where

and those where
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358. The formula is the formula for a

decaying alternating current.
a. Complete the following table with the appropriate

values.

0 (i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

b. Using only the values in the table, determine where
the tangent line to the graph of is horizontal.

359. [T] The population of Toledo, Ohio, in 2000 was
approximately 500,000. Assume the population is
increasing at a rate of 5% per year.

a. Write the exponential function that relates the total
population as a function of

b. Use a. to determine the rate at which the population
is increasing in years.

c. Use b. to determine the rate at which the population
is increasing in 10 years.

360. [T] An isotope of the element erbium has a half-life
of approximately 12 hours. Initially there are 9 grams of the
isotope present.

a. Write the exponential function that relates the
amount of substance remaining as a function of
measured in hours.

b. Use a. to determine the rate at which the substance
is decaying in hours.

c. Use b. to determine the rate of decay at
hours.

361. [T] The number of cases of influenza in New York
City from the beginning of 1960 to the beginning of 1961
is modeled by the function

where
gives the number of cases (in thousands) and t is measured
in years, with corresponding to the beginning of
1960.

a. Show work that evaluates and Briefly
describe what these values indicate about the
disease in New York City.

b. Show work that evaluates and
Briefly describe what these values indicate about
the disease in New York City.

362. [T] The relative rate of change of a differentiable

function is given by One model

for population growth is a Gompertz growth function,

given by where and are
constants.

a. Find the relative rate of change formula for the
generic Gompertz function.

b. Use a. to find the relative rate of change of a
population in months when

and
c. Briefly interpret what the result of b. means.

For the following exercises, use the population of New
York City from 1790 to 1860, given in the following table.
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Years since 1790 Population

0 33,131

10 60,515

20 96,373

30 123,706

40 202,300

50 312,710

60 515,547

70 813,669

Table 3.8 New York City Population Over
Time Source: http://en.wikipedia.org/
wiki/
Largest_cities_in_the_United_States
_by_population_by_decade.

363. [T] Using a computer program or a calculator, fit a
growth curve to the data of the form

364. [T] Using the exponential best fit for the data, write
a table containing the derivatives evaluated at each year.

365. [T] Using the exponential best fit for the data, write
a table containing the second derivatives evaluated at each
year.

366. [T] Using the tables of first and second derivatives
and the best fit, answer the following questions:

a. Will the model be accurate in predicting the future
population of New York City? Why or why not?

b. Estimate the population in 2010. Was the prediction
correct from a.?
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acceleration

amount of change

average rate of change

chain rule

constant multiple rule

constant rule

derivative

derivative function

difference quotient

difference rule

differentiable at a

differentiable function

differentiable on S

differentiation

higher-order derivative

implicit differentiation

instantaneous rate of change

logarithmic differentiation

marginal cost

marginal profit

marginal revenue

CHAPTER 3 REVIEW

KEY TERMS
is the rate of change of the velocity, that is, the derivative of velocity

the amount of a function over an interval is

is a function over an interval is

the chain rule defines the derivative of a composite function as the derivative of the outer function evaluated
at the inner function times the derivative of the inner function

the derivative of a constant c multiplied by a function f is the same as the constant multiplied by
the derivative:

the derivative of a constant function is zero: where c is a constant

the slope of the tangent line to a function at a point, calculated by taking the limit of the difference quotient, is
the derivative

gives the derivative of a function at each point in the domain of the original function for which the
derivative is defined

of a function at is given by

the derivative of the difference of a function f and a function g is the same as the difference of the
derivative of f and the derivative of g:

a function for which exists is differentiable at

a function for which exists is a differentiable function

a function for which exists for each in the open set is differentiable on

the process of taking a derivative

a derivative of a derivative, from the second derivative to the nth derivative, is called a higher-
order derivative

is a technique for computing for a function defined by an equation, accomplished by

differentiating both sides of the equation (remembering to treat the variable as a function) and solving for

the rate of change of a function at any point along the function also called

or the derivative of the function at

is a technique that allows us to differentiate a function by first taking the natural logarithm
of both sides of an equation, applying properties of logarithms to simplify the equation, and differentiating implicitly

is the derivative of the cost function, or the approximate cost of producing one more item

is the derivative of the profit function, or the approximate profit obtained by producing and selling one
more item

is the derivative of the revenue function, or the approximate revenue obtained by selling one more
item
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population growth rate

power rule

product rule

quotient rule

speed

sum rule

is the derivative of the population with respect to time

the derivative of a power function is a function in which the power on becomes the coefficient of the term

and the power on in the derivative decreases by 1: If is an integer, then

the derivative of a product of two functions is the derivative of the first function times the second function
plus the derivative of the second function times the first function:

the derivative of the quotient of two functions is the derivative of the first function times the second
function minus the derivative of the second function times the first function, all divided by the square of the second

function:

is the absolute value of velocity, that is, is the speed of an object at time whose velocity is given by

the derivative of the sum of a function f and a function g is the same as the sum of the derivative of f and the
derivative of g:

KEY EQUATIONS
• Difference quotient

• Difference quotient with increment

• Slope of tangent line

• Derivative of at

• Average velocity

• Instantaneous velocity

• The derivative function

• Derivative of sine function

• Derivative of cosine function

• Derivative of tangent function

Chapter 3 | Derivatives 335



• Derivative of cotangent function

• Derivative of secant function

• Derivative of cosecant function

• The chain rule

• The power rule for functions

• Inverse function theorem
whenever and is differentiable.

• Power rule with rational exponents

• Derivative of inverse sine function

• Derivative of inverse cosine function

• Derivative of inverse tangent function

• Derivative of inverse cotangent function

• Derivative of inverse secant function

• Derivative of inverse cosecant function

• Derivative of the natural exponential function

• Derivative of the natural logarithmic function

• Derivative of the general exponential function
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• Derivative of the general logarithmic function

KEY CONCEPTS
3.1 Defining the Derivative

• The slope of the tangent line to a curve measures the instantaneous rate of change of a curve. We can calculate it by
finding the limit of the difference quotient or the difference quotient with increment

• The derivative of a function at a value is found using either of the definitions for the slope of the tangent

line.

• Velocity is the rate of change of position. As such, the velocity at time is the derivative of the position
at time Average velocity is given by

Instantaneous velocity is given by

• We may estimate a derivative by using a table of values.

3.2 The Derivative as a Function

• The derivative of a function is the function whose value at is

• The graph of a derivative of a function is related to the graph of Where has a tangent line with

positive slope, Where has a tangent line with negative slope, Where has a

horizontal tangent line,

• If a function is differentiable at a point, then it is continuous at that point. A function is not differentiable at a point
if it is not continuous at the point, if it has a vertical tangent line at the point, or if the graph has a sharp corner or
cusp.

• Higher-order derivatives are derivatives of derivatives, from the second derivative to the derivative.

3.3 Differentiation Rules

• The derivative of a constant function is zero.

• The derivative of a power function is a function in which the power on becomes the coefficient of the term and
the power on in the derivative decreases by 1.

• The derivative of a constant c multiplied by a function f is the same as the constant multiplied by the derivative.

• The derivative of the sum of a function f and a function g is the same as the sum of the derivative of f and the
derivative of g.

• The derivative of the difference of a function f and a function g is the same as the difference of the derivative of f
and the derivative of g.

• The derivative of a product of two functions is the derivative of the first function times the second function plus the
derivative of the second function times the first function.

• The derivative of the quotient of two functions is the derivative of the first function times the second function minus
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the derivative of the second function times the first function, all divided by the square of the second function.

• We used the limit definition of the derivative to develop formulas that allow us to find derivatives without resorting
to the definition of the derivative. These formulas can be used singly or in combination with each other.

3.4 Derivatives as Rates of Change

• Using it is possible to estimate given and

• The rate of change of position is velocity, and the rate of change of velocity is acceleration. Speed is the absolute
value, or magnitude, of velocity.

• The population growth rate and the present population can be used to predict the size of a future population.

• Marginal cost, marginal revenue, and marginal profit functions can be used to predict, respectively, the cost of
producing one more item, the revenue obtained by selling one more item, and the profit obtained by producing and
selling one more item.

3.5 Derivatives of Trigonometric Functions

• We can find the derivatives of sin x and cos x by using the definition of derivative and the limit formulas found
earlier. The results are

• With these two formulas, we can determine the derivatives of all six basic trigonometric functions.

3.6 The Chain Rule

• The chain rule allows us to differentiate compositions of two or more functions. It states that for

In Leibniz’s notation this rule takes the form

• We can use the chain rule with other rules that we have learned, and we can derive formulas for some of them.

• The chain rule combines with the power rule to form a new rule:

• When applied to the composition of three functions, the chain rule can be expressed as follows: If
then

3.7 Derivatives of Inverse Functions

• The inverse function theorem allows us to compute derivatives of inverse functions without using the limit
definition of the derivative.

• We can use the inverse function theorem to develop differentiation formulas for the inverse trigonometric functions.

3.8 Implicit Differentiation

• We use implicit differentiation to find derivatives of implicitly defined functions (functions defined by equations).

• By using implicit differentiation, we can find the equation of a tangent line to the graph of a curve.

3.9 Derivatives of Exponential and Logarithmic Functions

• On the basis of the assumption that the exponential function is continuous everywhere and
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differentiable at 0, this function is differentiable everywhere and there is a formula for its derivative.

• We can use a formula to find the derivative of and the relationship allows us to extend

our differentiation formulas to include logarithms with arbitrary bases.

• Logarithmic differentiation allows us to differentiate functions of the form or very complex functions

by taking the natural logarithm of both sides and exploiting the properties of logarithms before differentiating.

CHAPTER 3 REVIEW EXERCISES
True or False? Justify the answer with a proof or a
counterexample.

367. Every function has a derivative.

368. A continuous function has a continuous derivative.

369. A continuous function has a derivative.

370. If a function is differentiable, it is continuous.

Use the limit definition of the derivative to exactly evaluate
the derivative.

371.

372.

Find the derivatives of the following functions.

373.

374.

375.

376.

377.

378.

379.

380.

Find the following derivatives of various orders.

381. First derivative of

382. Third derivative of

383. Second derivative of

Find the equation of the tangent line to the following
equations at the specified point.

384. at

385. at

Draw the derivative for the following graphs.

386.

387.

The following questions concern the water level in Ocean
City, New Jersey, in January, which can be approximated

by where t is measured in

hours after midnight, and the height is measured in feet.

388. Find and graph the derivative. What is the physical
meaning?
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389. Find What is the physical meaning of this
value?

The following questions consider the wind speeds of
Hurricane Katrina, which affected New Orleans, Louisiana,
in August 2005. The data are displayed in a table.

Hours after Midnight,
August 26

Wind Speed
(mph)

1 45

5 75

11 100

29 115

49 145

58 175

73 155

81 125

85 95

107 35

Table 3.9 Wind Speeds of Hurricane
Katrina Source:
http://news.nationalgeographic.com/news/2005/
09/0914_050914_katrina_timeline.html.

390. Using the table, estimate the derivative of the wind
speed at hour 39. What is the physical meaning?

391. Estimate the derivative of the wind speed at hour 83.
What is the physical meaning?
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