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Figure 2.1 The vision of human exploration by the National Aeronautics and Space Administration (NASA) to distant parts of
the universe illustrates the idea of space travel at high speeds. But, is there a limit to how fast a spacecraft can go? (credit:
NASA)
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Introduction
Science fiction writers often imagine spaceships that can travel to far-off planets in distant galaxies. However, back in 1905,
Albert Einstein showed that a limit exists to how fast any object can travel. The problem is that the faster an object moves,
the more mass it attains (in the form of energy), according to the equation
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where m0 is the object’s mass at rest, v is its speed, and c is the speed of light. What is this speed limit? (We explore this
problem further in Example 2.12.)

The idea of a limit is central to all of calculus. We begin this chapter by examining why limits are so important. Then, we
go on to describe how to find the limit of a function at a given point. Not all functions have limits at all points, and we
discuss what this means and how we can tell if a function does or does not have a limit at a particular value. This chapter has
been created in an informal, intuitive fashion, but this is not always enough if we need to prove a mathematical statement
involving limits. The last section of this chapter presents the more precise definition of a limit and shows how to prove
whether a function has a limit.

2.1 | A Preview of Calculus

Learning Objectives
2.1.1 Describe the tangent problem and how it led to the idea of a derivative.
2.1.2 Explain how the idea of a limit is involved in solving the tangent problem.
2.1.3 Recognize a tangent to a curve at a point as the limit of secant lines.
2.1.4 Identify instantaneous velocity as the limit of average velocity over a small time interval.
2.1.5 Describe the area problem and how it was solved by the integral.
2.1.6 Explain how the idea of a limit is involved in solving the area problem.
2.1.7 Recognize how the ideas of limit, derivative, and integral led to the studies of infinite series
and multivariable calculus.

As we embark on our study of calculus, we shall see how its development arose from common solutions to practical
problems in areas such as engineering physics—like the space travel problem posed in the chapter opener. Two key
problems led to the initial formulation of calculus: (1) the tangent problem, or how to determine the slope of a line tangent
to a curve at a point; and (2) the area problem, or how to determine the area under a curve.

The Tangent Problem and Differential Calculus
Rate of change is one of the most critical concepts in calculus. We begin our investigation of rates of change by looking at
the graphs of the three lines and shown in Figure 2.2.

Figure 2.2 The rate of change of a linear function is constant in each of these three graphs, with the constant determined by the
slope.

As we move from left to right along the graph of we see that the graph decreases at a constant rate. For

every 1 unit we move to the right along the x-axis, the y-coordinate decreases by 2 units. This rate of change is determined
by the slope (−2) of the line. Similarly, the slope of 1/2 in the function tells us that for every change in x of 1 unit

there is a corresponding change in y of 1/2 unit. The function has a slope of zero, indicating that the values of the
function remain constant. We see that the slope of each linear function indicates the rate of change of the function.
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Compare the graphs of these three functions with the graph of (Figure 2.3). The graph of starts from
the left by decreasing rapidly, then begins to decrease more slowly and level off, and then finally begins to increase—slowly
at first, followed by an increasing rate of increase as it moves toward the right. Unlike a linear function, no single number
represents the rate of change for this function. We quite naturally ask: How do we measure the rate of change of a nonlinear
function?

Figure 2.3 The function does not have a constant

rate of change.

We can approximate the rate of change of a function at a point on its graph by taking another point

on the graph of drawing a line through the two points, and calculating the slope of the resulting line. Such a line is

called a secant line. Figure 2.4 shows a secant line to a function at a point

Figure 2.4 The slope of a secant line through a point
estimates the rate of change of the function at the

point

We formally define a secant line as follows:
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Definition

The secant to the function through the points and is the line passing through these points. Its

slope is given by

(2.1)

The accuracy of approximating the rate of change of the function with a secant line depends on how close x is to a. As we
see in Figure 2.5, if x is closer to a, the slope of the secant line is a better measure of the rate of change of at a.

Figure 2.5 As x gets closer to a, the slope of the secant line
becomes a better approximation to the rate of change of the
function at a.

The secant lines themselves approach a line that is called the tangent to the function at a (Figure 2.6). The slope of

the tangent line to the graph at a measures the rate of change of the function at a. This value also represents the derivative of
the function at a, or the rate of change of the function at a. This derivative is denoted by Differential calculus
is the field of calculus concerned with the study of derivatives and their applications.

For an interactive demonstration of the slope of a secant line that you can manipulate yourself, visit this applet
(Note: this site requires a Java browser plugin): Math Insight (http://www.openstax.org/l/20_mathinsight)
.

Figure 2.6 Solving the Tangent Problem: As x approaches a,
the secant lines approach the tangent line.
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Example 2.1 illustrates how to find slopes of secant lines. These slopes estimate the slope of the tangent line or,
equivalently, the rate of change of the function at the point at which the slopes are calculated.

Example 2.1

Finding Slopes of Secant Lines

Estimate the slope of the tangent line (rate of change) to at by finding slopes of secant lines

through and each of the following points on the graph of

a.

b.

Solution
Use the formula for the slope of a secant line from the definition.

a.

b.

The point in part b. is closer to the point so the slope of 2.5 is closer to the slope of the tangent line. A
good estimate for the slope of the tangent would be in the range of 2 to 2.5 (Figure 2.7).

Figure 2.7 The secant lines to at through

(a) and (b) provide successively closer

approximations to the tangent line to at
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2.1 Estimate the slope of the tangent line (rate of change) to at by finding slopes of secant

lines through and the point on the graph of

We continue our investigation by exploring a related question. Keeping in mind that velocity may be thought of as the rate
of change of position, suppose that we have a function, that gives the position of an object along a coordinate axis
at any given time t. Can we use these same ideas to create a reasonable definition of the instantaneous velocity at a given
time We start by approximating the instantaneous velocity with an average velocity. First, recall that the speed of
an object traveling at a constant rate is the ratio of the distance traveled to the length of time it has traveled. We define the
average velocity of an object over a time period to be the change in its position divided by the length of the time period.

Definition

Let be the position of an object moving along a coordinate axis at time t. The average velocity of the object over
a time interval where (or if is

(2.2)

As t is chosen closer to a, the average velocity becomes closer to the instantaneous velocity. Note that finding the average
velocity of a position function over a time interval is essentially the same as finding the slope of a secant line to a function.
Furthermore, to find the slope of a tangent line at a point a, we let the x-values approach a in the slope of the secant line.
Similarly, to find the instantaneous velocity at time a, we let the t-values approach a in the average velocity. This process
of letting x or t approach a in an expression is called taking a limit. Thus, we may define the instantaneous velocity as
follows.

Definition

For a position function the instantaneous velocity at a time is the value that the average velocities
approach on intervals of the form and as the values of t become closer to a, provided such a value exists.

Example 2.2 illustrates this concept of limits and average velocity.

Example 2.2

Finding Average Velocity

A rock is dropped from a height of 64 ft. It is determined that its height (in feet) above ground t seconds later (for
is given by Find the average velocity of the rock over each of the given time

intervals. Use this information to guess the instantaneous velocity of the rock at time

a.

b.

Solution
Substitute the data into the formula for the definition of average velocity.

a.
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2.2

b.

The instantaneous velocity is somewhere between −15.84 and −16.16 ft/sec. A good guess might be −16 ft/sec.

An object moves along a coordinate axis so that its position at time t is given by Estimate its

instantaneous velocity at time by computing its average velocity over the time interval

The Area Problem and Integral Calculus
We now turn our attention to a classic question from calculus. Many quantities in physics—for example, quantities of
work—may be interpreted as the area under a curve. This leads us to ask the question: How can we find the area between
the graph of a function and the x-axis over an interval (Figure 2.8)?

Figure 2.8 The Area Problem: How do we find the area of the
shaded region?

As in the answer to our previous questions on velocity, we first try to approximate the solution. We approximate the area by
dividing up the interval into smaller intervals in the shape of rectangles. The approximation of the area comes from
adding up the areas of these rectangles (Figure 2.9).

Figure 2.9 The area of the region under the curve is
approximated by summing the areas of thin rectangles.

As the widths of the rectangles become smaller (approach zero), the sums of the areas of the rectangles approach the area
between the graph of and the x-axis over the interval Once again, we find ourselves taking a limit. Limits

of this type serve as a basis for the definition of the definite integral. Integral calculus is the study of integrals and their
applications.
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Example 2.3

Estimation Using Rectangles

Estimate the area between the x-axis and the graph of over the interval by using the three

rectangles shown in Figure 2.10.

Figure 2.10 The area of the region under the curve of
can be estimated using rectangles.

Solution
The areas of the three rectangles are 1 unit2, 2 unit2, and 5 unit2. Using these rectangles, our area estimate is 8
unit2.
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2.3 Estimate the area between the x-axis and the graph of over the interval by using

the three rectangles shown here:

Other Aspects of Calculus
So far, we have studied functions of one variable only. Such functions can be represented visually using graphs in two
dimensions; however, there is no good reason to restrict our investigation to two dimensions. Suppose, for example, that
instead of determining the velocity of an object moving along a coordinate axis, we want to determine the velocity of a
rock fired from a catapult at a given time, or of an airplane moving in three dimensions. We might want to graph real-value
functions of two variables or determine volumes of solids of the type shown in Figure 2.11. These are only a few of the
types of questions that can be asked and answered using multivariable calculus. Informally, multivariable calculus can be
characterized as the study of the calculus of functions of two or more variables. However, before exploring these and other
ideas, we must first lay a foundation for the study of calculus in one variable by exploring the concept of a limit.

Figure 2.11 We can use multivariable calculus to find the
volume between a surface defined by a function of two variables
and a plane.

Chapter 2 | Limits 131



2.1 EXERCISES
For the following exercises, points and

are on the graph of the function

1. [T] Complete the following table with the appropriate
values: y-coordinate of Q, the point and the slope

of the secant line passing through points P and Q. Round
your answer to eight significant digits.

x y ( ) msec

1.1 a. e. i.

1.01 b. f. j.

1.001 c. g. k.

1.0001 d. h. l.

2. Use the values in the right column of the table in the
preceding exercise to guess the value of the slope of the line
tangent to f at

3. Use the value in the preceding exercise to find the
equation of the tangent line at point P. Graph and the

tangent line.

For the following exercises, points and

are on the graph of the function

4. [T] Complete the following table with the appropriate
values: y-coordinate of Q, the point and the slope

of the secant line passing through points P and Q. Round
your answer to eight significant digits.

x y ( ) msec

1.1 a. e. i.

1.01 b. f. j.

1.001 c. g. k.

1.0001 d. h. l.

5. Use the values in the right column of the table in the
preceding exercise to guess the value of the slope of the
tangent line to f at

6. Use the value in the preceding exercise to find the
equation of the tangent line at point P. Graph and the

tangent line.

For the following exercises, points and

are on the graph of the function

7. [T] Complete the following table with the appropriate
values: y-coordinate of Q, the point and the slope

of the secant line passing through points P and Q. Round
your answer to eight significant digits.

x y ( ) msec

4.1 a. e. i.

4.01 b. f. j.

4.001 c. g. k.

4.0001 d. h. l.

8. Use the values in the right column of the table in the
preceding exercise to guess the value of the slope of the
tangent line to f at

9. Use the value in the preceding exercise to find the
equation of the tangent line at point P.

For the following exercises, points and

are on the graph of the function
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10. [T] Complete the following table with the appropriate
values: y-coordinate of Q, the point and the

slope of the secant line passing through points P and Q.
Round your answer to eight significant digits.

x y ⎛
⎝

⎞
⎠ msec

1.4 a. e. i.

1.49 b. f. j.

1.499 c. g. k.

1.4999 d. h. l.

11. Use the values in the right column of the table in the
preceding exercise to guess the value of the slope of the
tangent line to f at

12. Use the value in the preceding exercise to find the
equation of the tangent line at point P.

For the following exercises, points and

are on the graph of the function

13. [T] Complete the following table with the appropriate
values: y-coordinate of Q, the point and the slope

of the secant line passing through points P and Q. Round
your answer to eight significant digits.

x y ( ) msec

−1.05 a. e. i.

−1.01 b. f. j.

−1.005 c. g. k.

−1.001 d. h. l.

14. Use the values in the right column of the table in the
preceding exercise to guess the value of the slope of the line
tangent to f at

15. Use the value in the preceding exercise to find the
equation of the tangent line at point P.

For the following exercises, the position function of a ball
dropped from the top of a 200-meter tall building is given

by where position s is measured in
meters and time t is measured in seconds. Round your
answer to eight significant digits.

16. [T] Compute the average velocity of the ball over the
given time intervals.

a.
b.
c.
d.

17. Use the preceding exercise to guess the instantaneous
velocity of the ball at sec.

For the following exercises, consider a stone tossed into the
air from ground level with an initial velocity of 15 m/sec.
Its height in meters at time t seconds is

18. [T] Compute the average velocity of the stone over the
given time intervals.

a.
b.
c.
d.

19. Use the preceding exercise to guess the instantaneous
velocity of the stone at sec.

For the following exercises, consider a rocket shot into the
air that then returns to Earth. The height of the rocket in
meters is given by where t is
measured in seconds.

20. [T] Compute the average velocity of the rocket over
the given time intervals.

a.
b.
c.
d.

21. Use the preceding exercise to guess the instantaneous
velocity of the rocket at sec.

For the following exercises, consider an athlete running
a 40-m dash. The position of the athlete is given by

where d is the position in meters and t is

the time elapsed, measured in seconds.
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22. [T] Compute the average velocity of the runner over
the given time intervals.

a.
b.
c.
d.

23. Use the preceding exercise to guess the instantaneous
velocity of the runner at sec.

For the following exercises, consider the function

24. Sketch the graph of f over the interval and
shade the region above the x-axis.

25. Use the preceding exercise to find the aproximate
value of the area between the x-axis and the graph of f over
the interval using rectangles. For the rectangles,
use the square units, and approximate both above and
below the lines. Use geometry to find the exact answer.

For the following exercises, consider the function

(Hint: This is the upper half of a circle of

radius 1 positioned at

26. Sketch the graph of f over the interval

27. Use the preceding exercise to find the aproximate area
between the x-axis and the graph of f over the interval

using rectangles. For the rectangles, use squares
0.4 by 0.4 units, and approximate both above and below the
lines. Use geometry to find the exact answer.

For the following exercises, consider the function

28. Sketch the graph of f over the interval

29. Approximate the area of the region between the x-axis
and the graph of f over the interval
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2.2 | The Limit of a Function

Learning Objectives
2.2.1 Using correct notation, describe the limit of a function.
2.2.2 Use a table of values to estimate the limit of a function or to identify when the limit does not
exist.
2.2.3 Use a graph to estimate the limit of a function or to identify when the limit does not exist.
2.2.4 Define one-sided limits and provide examples.
2.2.5 Explain the relationship between one-sided and two-sided limits.
2.2.6 Using correct notation, describe an infinite limit.
2.2.7 Define a vertical asymptote.

The concept of a limit or limiting process, essential to the understanding of calculus, has been around for thousands of years.
In fact, early mathematicians used a limiting process to obtain better and better approximations of areas of circles. Yet, the
formal definition of a limit—as we know and understand it today—did not appear until the late 19th century. We therefore
begin our quest to understand limits, as our mathematical ancestors did, by using an intuitive approach. At the end of this
chapter, armed with a conceptual understanding of limits, we examine the formal definition of a limit.

We begin our exploration of limits by taking a look at the graphs of the functions

which are shown in Figure 2.12. In particular, let’s focus our attention on the behavior of each graph at and around

Figure 2.12 These graphs show the behavior of three different functions around

Each of the three functions is undefined at but if we make this statement and no other, we give a very incomplete
picture of how each function behaves in the vicinity of To express the behavior of each graph in the vicinity of 2
more completely, we need to introduce the concept of a limit.

Intuitive Definition of a Limit
Let’s first take a closer look at how the function behaves around in Figure 2.12. As the

values of x approach 2 from either side of 2, the values of approach 4. Mathematically, we say that the limit of

as x approaches 2 is 4. Symbolically, we express this limit as
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From this very brief informal look at one limit, let’s start to develop an intuitive definition of the limit. We can think of the
limit of a function at a number a as being the one real number L that the functional values approach as the x-values approach
a, provided such a real number L exists. Stated more carefully, we have the following definition:

Definition

Let be a function defined at all values in an open interval containing a, with the possible exception of a itself,

and let L be a real number. If all values of the function approach the real number L as the values of

approach the number a, then we say that the limit of as x approaches a is L. (More succinct, as x gets closer to a,

gets closer and stays close to L.) Symbolically, we express this idea as

(2.3)

We can estimate limits by constructing tables of functional values and by looking at their graphs. This process is described
in the following Problem-Solving Strategy.

Problem-Solving Strategy: Evaluating a Limit Using a Table of Functional Values

1. To evaluate we begin by completing a table of functional values. We should choose two sets of

x-values—one set of values approaching a and less than a, and another set of values approaching a and greater
than a. Table 2.1 demonstrates what your tables might look like.

x ( ) x ( )

Use additional values as necessary. Use additional values as necessary.

Table 2.1 Table of Functional Values for

2. Next, let’s look at the values in each of the columns and determine whether the values seem to

be approaching a single value as we move down each column. In our columns, we look at the sequence
and so on, and

and so on. (Note: Although we have chosen the

x-values and so forth, and these values will probably work nearly
every time, on very rare occasions we may need to modify our choices.)

3. If both columns approach a common y-value L, we state We can use the following strategy to

confirm the result obtained from the table or as an alternative method for estimating a limit.
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4. Using a graphing calculator or computer software that allows us graph functions, we can plot the function
making sure the functional values of for x-values near a are in our window. We can use the trace

feature to move along the graph of the function and watch the y-value readout as the x-values approach a. If
the y-values approach L as our x-values approach a from both directions, then We may need

to zoom in on our graph and repeat this process several times.

We apply this Problem-Solving Strategy to compute a limit in Example 2.4.

Example 2.4

Evaluating a Limit Using a Table of Functional Values 1

Evaluate using a table of functional values.

Solution
We have calculated the values of for the values of x listed in Table 2.2.

x x

−0.1 0.998334166468 0.1 0.998334166468

−0.01 0.999983333417 0.01 0.999983333417

−0.001 0.999999833333 0.001 0.999999833333

−0.0001 0.999999998333 0.0001 0.999999998333

Table 2.2
Table of Functional Values for

Note: The values in this table were obtained using a calculator and using all the places given in the calculator
output.

As we read down each column, we see that the values in each column appear to be approaching one.

Thus, it is fairly reasonable to conclude that A calculator or computer-generated graph of

would be similar to that shown in Figure 2.13, and it confirms our estimate.
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Figure 2.13 The graph of confirms the

estimate from Table 2.2.

Example 2.5

Evaluating a Limit Using a Table of Functional Values 2

Evaluate using a table of functional values.

Solution
As before, we use a table—in this case, Table 2.3—to list the values of the function for the given values of x.

x x

3.9 0.251582341869 4.1 0.248456731317

3.99 0.25015644562 4.01 0.24984394501

3.999 0.250015627 4.001 0.249984377

3.9999 0.250001563 4.0001 0.249998438

3.99999 0.25000016 4.00001 0.24999984

Table 2.3
Table of Functional Values for

After inspecting this table, we see that the functional values less than 4 appear to be decreasing toward
0.25 whereas the functional values greater than 4 appear to be increasing toward 0.25. We conclude that
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2.4

We confirm this estimate using the graph of shown in Figure 2.14.

Figure 2.14 The graph of confirms the

estimate from Table 2.3.

Estimate using a table of functional values. Use a graph to confirm your estimate.

At this point, we see from Example 2.4 and Example 2.5 that it may be just as easy, if not easier, to estimate a limit of
a function by inspecting its graph as it is to estimate the limit by using a table of functional values. In Example 2.6, we
evaluate a limit exclusively by looking at a graph rather than by using a table of functional values.
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Example 2.6

Evaluating a Limit Using a Graph

For shown in Figure 2.15, evaluate

Figure 2.15 The graph of includes one value not on a

smooth curve.

Solution
Despite the fact that as the x-values approach −1 from either side, the values approach 3.

Therefore, Note that we can determine this limit without even knowing the algebraic expression

of the function.

Based on Example 2.6, we make the following observation: It is possible for the limit of a function to exist at a point, and
for the function to be defined at this point, but the limit of the function and the value of the function at the point may be
different.
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2.5 Use the graph of in Figure 2.16 to evaluate if possible.

Figure 2.16

Looking at a table of functional values or looking at the graph of a function provides us with useful insight into the value
of the limit of a function at a given point. However, these techniques rely too much on guesswork. We eventually need to
develop alternative methods of evaluating limits. These new methods are more algebraic in nature and we explore them in
the next section; however, at this point we introduce two special limits that are foundational to the techniques to come.

Theorem 2.1: Two Important Limits

Let a be a real number and c be a constant.

i. (2.4)

ii. (2.5)

We can make the following observations about these two limits.

i. For the first limit, observe that as x approaches a, so does because Consequently,

ii. For the second limit, consider Table 2.4.

x ( ) x ( )

c c

c c

c c

c c

Table 2.4 Table of Functional Values for
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Observe that for all values of x (regardless of whether they are approaching a), the values remain constant at c. We

have no choice but to conclude

The Existence of a Limit
As we consider the limit in the next example, keep in mind that for the limit of a function to exist at a point, the functional
values must approach a single real-number value at that point. If the functional values do not approach a single value, then
the limit does not exist.

Example 2.7

Evaluating a Limit That Fails to Exist

Evaluate using a table of values.

Solution
Table 2.5 lists values for the function for the given values of x.

x
⎛
⎝
⎞
⎠ x

⎛
⎝
⎞
⎠

−0.1 0.544021110889 0.1 −0.544021110889

−0.01 0.50636564111 0.01 −0.50636564111

−0.001 −0.8268795405312 0.001 0.826879540532

−0.0001 0.305614388888 0.0001 −0.305614388888

−0.00001 −0.035748797987 0.00001 0.035748797987

−0.000001 0.349993504187 0.000001 −0.349993504187

Table 2.5
Table of Functional Values for

After examining the table of functional values, we can see that the y-values do not seem to approach any one
single value. It appears the limit does not exist. Before drawing this conclusion, let’s take a more systematic
approach. Take the following sequence of x-values approaching 0:

The corresponding y-values are

At this point we can indeed conclude that does not exist. (Mathematicians frequently abbreviate
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2.6

“does not exist” as DNE. Thus, we would write DNE.) The graph of is shown

in Figure 2.17 and it gives a clearer picture of the behavior of as x approaches 0. You can see that
oscillates ever more wildly between −1 and 1 as x approaches 0.

Figure 2.17 The graph of oscillates rapidly

between −1 and 1 as x approaches 0.

Use a table of functional values to evaluate if possible.

One-Sided Limits
Sometimes indicating that the limit of a function fails to exist at a point does not provide us with enough information
about the behavior of the function at that particular point. To see this, we now revisit the function

introduced at the beginning of the section (see Figure 2.12(b)). As we pick values of x close to 2, does not approach

a single value, so the limit as x approaches 2 does not exist—that is, DNE. However, this statement alone does

not give us a complete picture of the behavior of the function around the x-value 2. To provide a more accurate description,
we introduce the idea of a one-sided limit. For all values to the left of 2 (or the negative side of 2), Thus, as x

approaches 2 from the left, approaches −1. Mathematically, we say that the limit as x approaches 2 from the left is −1.

Symbolically, we express this idea as

Similarly, as x approaches 2 from the right (or from the positive side), approaches 1. Symbolically, we express this

idea as

We can now present an informal definition of one-sided limits.

Definition

We define two types of one-sided limits.
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Limit from the left: Let be a function defined at all values in an open interval of the form (c, a), and let L be a real

number. If the values of the function approach the real number L as the values of x (where approach the

number a, then we say that L is the limit of as x approaches a from the left. Symbolically, we express this idea as

(2.6)

Limit from the right: Let be a function defined at all values in an open interval of the form and let L be a

real number. If the values of the function approach the real number L as the values of x (where approach

the number a, then we say that L is the limit of as x approaches a from the right. Symbolically, we express this

idea as

(2.7)

Example 2.8

Evaluating One-Sided Limits

For the function evaluate each of the following limits.

a.

b.

Solution
We can use tables of functional values again Table 2.6. Observe that for values of x less than 2, we use

and for values of x greater than 2, we use

x x

1.9 2.9 2.1 0.41

1.99 2.99 2.01 0.0401

1.999 2.999 2.001 0.004001

1.9999 2.9999 2.0001 0.00040001

1.99999 2.99999 2.00001 0.0000400001

Table 2.6

Table of Functional Values for
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2.7

Based on this table, we can conclude that a. and b. Therefore, the (two-sided)

limit of does not exist at Figure 2.18 shows a graph of and reinforces our conclusion about

these limits.

Figure 2.18 The graph of has a

break at

Use a table of functional values to estimate the following limits, if possible.

a.

b.

Let us now consider the relationship between the limit of a function at a point and the limits from the right and left at that
point. It seems clear that if the limit from the right and the limit from the left have a common value, then that common value
is the limit of the function at that point. Similarly, if the limit from the left and the limit from the right take on different
values, the limit of the function does not exist. These conclusions are summarized in Relating One-Sided and Two-
Sided Limits.

Theorem 2.2: Relating One-Sided and Two-Sided Limits

Let be a function defined at all values in an open interval containing a, with the possible exception of a itself,

and let L be a real number. Then,
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Infinite Limits
Evaluating the limit of a function at a point or evaluating the limit of a function from the right and left at a point helps us to
characterize the behavior of a function around a given value. As we shall see, we can also describe the behavior of functions
that do not have finite limits.

We now turn our attention to the third and final function introduced at the beginning of this section

(see Figure 2.12(c)). From its graph we see that as the values of x approach 2, the values of become
larger and larger and, in fact, become infinite. Mathematically, we say that the limit of as x approaches 2 is positive
infinity. Symbolically, we express this idea as

More generally, we define infinite limits as follows:

Definition

We define three types of infinite limits.

Infinite limits from the left: Let be a function defined at all values in an open interval of the form

i. If the values of increase without bound as the values of x (where approach the number a, then

we say that the limit as x approaches a from the left is positive infinity and we write

(2.8)

ii. If the values of decrease without bound as the values of x (where approach the number a, then

we say that the limit as x approaches a from the left is negative infinity and we write

(2.9)

Infinite limits from the right: Let be a function defined at all values in an open interval of the form

i. If the values of increase without bound as the values of x (where approach the number a, then

we say that the limit as x approaches a from the right is positive infinity and we write

(2.10)

ii. If the values of decrease without bound as the values of x (where approach the number a, then

we say that the limit as x approaches a from the right is negative infinity and we write

(2.11)

Two-sided infinite limit: Let be defined for all in an open interval containing a.

i. If the values of increase without bound as the values of x (where approach the number a, then

we say that the limit as x approaches a is positive infinity and we write

(2.12)

ii. If the values of decrease without bound as the values of x (where approach the number a, then

we say that the limit as x approaches a is negative infinity and we write

(2.13)

It is important to understand that when we write statements such as or we are

describing the behavior of the function, as we have just defined it. We are not asserting that a limit exists. For the
limit of a function to exist at a, it must approach a real number L as x approaches a. That said, if, for example,

we always write rather than DNE.
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Example 2.9

Recognizing an Infinite Limit

Evaluate each of the following limits, if possible. Use a table of functional values and graph to

confirm your conclusion.

a.

b.

c.

Solution
Begin by constructing a table of functional values.

x x

−0.1 −10 0.1 10

−0.01 −100 0.01 100

−0.001 −1000 0.001 1000

−0.0001 −10,000 0.0001 10,000

−0.00001 −100,000 0.00001 100,000

−0.000001 −1,000,000 0.000001 1,000,000

Table 2.7
Table of Functional Values for

a. The values of decrease without bound as x approaches 0 from the left. We conclude that

b. The values of increase without bound as x approaches 0 from the right. We conclude that

c. Since and have different values, we conclude that

The graph of in Figure 2.19 confirms these conclusions.
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Figure 2.19 The graph of confirms that the limit

as x approaches 0 does not exist.

Evaluate each of the following limits, if possible. Use a table of functional values and graph

to confirm your conclusion.

a.

b.

c.

It is useful to point out that functions of the form where n is a positive integer, have infinite limits as x

approaches a from either the left or right (Figure 2.20). These limits are summarized in Infinite Limits from Positive
Integers.
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Figure 2.20 The function has infinite limits at a.

Theorem 2.3: Infinite Limits from Positive Integers

If n is a positive even integer, then

If n is a positive odd integer, then

and

We should also point out that in the graphs of points on the graph having x-coordinates very near to a

are very close to the vertical line That is, as x approaches a, the points on the graph of are closer to the line

The line is called a vertical asymptote of the graph. We formally define a vertical asymptote as follows:

Definition

Let be a function. If any of the following conditions hold, then the line is a vertical asymptote of

Example 2.10

Chapter 2 | Limits 149



2.9

Finding a Vertical Asymptote

Evaluate each of the following limits using Infinite Limits from Positive Integers. Identify any vertical
asymptotes of the function

a.

b.

c.

Solution
We can use Infinite Limits from Positive Integers directly.

a.

b.

c.

The function has a vertical asymptote of

Evaluate each of the following limits. Identify any vertical asymptotes of the function

a.

b.

c.

In the next example we put our knowledge of various types of limits to use to analyze the behavior of a function at several
different points.

Example 2.11

Behavior of a Function at Different Points

Use the graph of in Figure 2.21 to determine each of the following values:

a.
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2.10

b.

c.

d.

Figure 2.21 The graph shows

Solution
Using Infinite Limits from Positive Integers and the graph for reference, we arrive at the following values:

a.

b. is undefined

c. DNE;

d. is undefined

Evaluate for shown here:
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Example 2.12

Chapter Opener: Einstein’s Equation

Figure 2.22 (credit: NASA)

In the chapter opener we mentioned briefly how Albert Einstein showed that a limit exists to how fast any object
can travel. Given Einstein’s equation for the mass of a moving object, what is the value of this bound?

Solution
Our starting point is Einstein’s equation for the mass of a moving object,

where is the object’s mass at rest, v is its speed, and c is the speed of light. To see how the mass changes at

high speeds, we can graph the ratio of masses as a function of the ratio of speeds, (Figure 2.23).

Figure 2.23 This graph shows the ratio of masses as a
function of the ratio of speeds in Einstein’s equation for the
mass of a moving object.

We can see that as the ratio of speeds approaches 1—that is, as the speed of the object approaches the speed
of light—the ratio of masses increases without bound. In other words, the function has a vertical asymptote at

We can try a few values of this ratio to test this idea.
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0.99 0.1411 7.089

0.999 0.0447 22.37

0.9999 0.0141 70.71

Table 2.8
Ratio of Masses and Speeds for a
Moving Object

Thus, according to Table 2.8, if an object with mass 100 kg is traveling at 0.9999c, its mass becomes 7071 kg.
Since no object can have an infinite mass, we conclude that no object can travel at or more than the speed of light.
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2.2 EXERCISES
For the following exercises, consider the function

30. [T] Complete the following table for the function.
Round your solutions to four decimal places.

x ( ) x ( )

0.9 a. 1.1 e.

0.99 b. 1.01 f.

0.999 c. 1.001 g.

0.9999 d. 1.0001 h.

31. What do your results in the preceding exercise indicate
about the two-sided limit Explain your

response.

For the following exercises, consider the function

32. [T] Make a table showing the values of f for
and for

Round your solutions
to five decimal places.

x ( ) x ( )

−0.01 a. 0.01 e.

−0.001 b. 0.001 f.

−0.0001 c. 0.0001 g.

−0.00001 d. 0.00001 h.

33. What does the table of values in the preceding exercise
indicate about the function

34. To which mathematical constant does the limit in the
preceding exercise appear to be getting closer?

In the following exercises, use the given values to set up a

table to evaluate the limits. Round your solutions to eight
decimal places.

35. [T]

x x

−0.1 a. 0.1 e.

−0.01 b. 0.01 f.

−0.001 c. 0.001 g.

−0.0001 d. 0.0001 h.

36. [T] ±0.1, ±0.01, ±0.001, ±0.0001

X x

−0.1 a. 0.1 e.

−0.01 b. 0.01 f.

−0.001 c. 0.001 g.

−0.0001 d. 0.0001 h.

37. Use the preceding two exercises to conjecture (guess)
the value of the following limit: for a, a

positive real value.

[T] In the following exercises, set up a table of values to
find the indicated limit. Round to eight digits.
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38.

x x

1.9 a. 2.1 e.

1.99 b. 2.01 f.

1.999 c. 2.001 g.

1.9999 d. 2.0001 h.

39.

x x

0.9 a. 1.1 e.

0.99 b. 1.01 f.

0.999 c. 1.001 g.

0.9999 d. 1.0001 h.

40.

x x

−0.1 a. 0.1 e.

−0.01 b. 0.01 f.

−0.001 c. 0.001 g.

−0.0001 d. 0.0001 h.

41.

z ( ) z ( )

−0.1 a. 0.1 e.

−0.01 b. 0.01 f.

−0.001 c. 0.001 g.

−0.0001 d. 0.0001 h.

42.

t

0.1 a.

0.01 b.

0.001 c.

0.0001 d.

43.

x x

1.9 a. 2.1 e.

1.99 b. 2.01 f.

1.999 c. 2.001 g.

1.9999 d. 2.0001 h.

[T] In the following exercises, set up a table of values
and round to eight significant digits. Based on the table of
values, make a guess about what the limit is. Then, use a
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calculator to graph the function and determine the limit.
Was the conjecture correct? If not, why does the method of
tables fail?

44.

θ
⎛
⎝
⎞
⎠ θ

⎛
⎝
⎞
⎠

−0.1 a. 0.1 e.

−0.01 b. 0.01 f.

−0.001 c. 0.001 g.

−0.0001 d. 0.0001 h.

45.

a ⎛
⎝

⎞
⎠

0.1 a.

0.01 b.

0.001 c.

0.0001 d.

In the following exercises, consider the graph of the
function shown here. Which of the statements

about are true and which are false? Explain why

a statement is false.

46.

47.

48.

49.

In the following exercises, use the following graph of the
function to find the values, if possible. Estimate

when necessary.
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50.

51.

52.

53.

54.

In the following exercises, use the graph of the function
shown here to find the values, if possible.

Estimate when necessary.

55.

56.

57.

58.

In the following exercises, use the graph of the function
shown here to find the values, if possible.

Estimate when necessary.

59.

60.

61.

62.

63.

64.

In the following exercises, use the graph of the function
shown here to find the values, if possible.

Estimate when necessary.

65.
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66.

67.

In the following exercises, use the graph of the function
shown here to find the values, if possible.

Estimate when necessary.

68.

69.

70.

In the following exercises, use the graph of the function
shown here to find the values, if possible.

Estimate when necessary.

71.

72.

73.

74.

75.

In the following exercises, sketch the graph of a function
with the given properties.

76.
is

not defined.

77.

78.

79.

80.
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81. Shock waves arise in many physical applications,
ranging from supernovas to detonation waves. A graph of
the density of a shock wave with respect to distance, x, is
shown here. We are mainly interested in the location of the
front of the shock, labeled in the diagram.

a. Evaluate

b. Evaluate

c. Evaluate Explain the physical

meanings behind your answers.

82. A track coach uses a camera with a fast shutter to
estimate the position of a runner with respect to time. A
table of the values of position of the athlete versus time is
given here, where x is the position in meters of the runner
and t is time in seconds. What is What does it

mean physically?

t (sec) x (m)

1.75 4.5

1.95 6.1

1.99 6.42

2.01 6.58

2.05 6.9

2.25 8.5
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2.3 | The Limit Laws

Learning Objectives
2.3.1 Recognize the basic limit laws.
2.3.2 Use the limit laws to evaluate the limit of a function.
2.3.3 Evaluate the limit of a function by factoring.
2.3.4 Use the limit laws to evaluate the limit of a polynomial or rational function.
2.3.5 Evaluate the limit of a function by factoring or by using conjugates.
2.3.6 Evaluate the limit of a function by using the squeeze theorem.

In the previous section, we evaluated limits by looking at graphs or by constructing a table of values. In this section, we
establish laws for calculating limits and learn how to apply these laws. In the Student Project at the end of this section, you
have the opportunity to apply these limit laws to derive the formula for the area of a circle by adapting a method devised by
the Greek mathematician Archimedes. We begin by restating two useful limit results from the previous section. These two
results, together with the limit laws, serve as a foundation for calculating many limits.

Evaluating Limits with the Limit Laws
The first two limit laws were stated in Two Important Limits and we repeat them here. These basic results, together with
the other limit laws, allow us to evaluate limits of many algebraic functions.

Theorem 2.4: Basic Limit Results

For any real number a and any constant c,

i. (2.14)

ii. (2.15)

Example 2.13

Evaluating a Basic Limit

Evaluate each of the following limits using Basic Limit Results.

a.

b.

Solution
a. The limit of x as x approaches a is a:

b. The limit of a constant is that constant:

We now take a look at the limit laws, the individual properties of limits. The proofs that these laws hold are omitted here.
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Theorem 2.5: Limit Laws

Let and be defined for all over some open interval containing a. Assume that L and M are real

numbers such that and Let c be a constant. Then, each of the following statements

holds:

Sum law for limits:

Difference law for limits:

Constant multiple law for limits:

Product law for limits:

Quotient law for limits: for

Power law for limits: for every positive integer n.

Root law for limits: for all L if n is odd and for if n is even and .

We now practice applying these limit laws to evaluate a limit.

Example 2.14

Evaluating a Limit Using Limit Laws

Use the limit laws to evaluate

Solution
Let’s apply the limit laws one step at a time to be sure we understand how they work. We need to keep in mind
the requirement that, at each application of a limit law, the new limits must exist for the limit law to be applied.

Example 2.15

Using Limit Laws Repeatedly

Use the limit laws to evaluate

Solution
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To find this limit, we need to apply the limit laws several times. Again, we need to keep in mind that as we rewrite
the limit in terms of other limits, each new limit must exist for the limit law to be applied.

Use the limit laws to evaluate In each step, indicate the limit law applied.

Limits of Polynomial and Rational Functions
By now you have probably noticed that, in each of the previous examples, it has been the case that This

is not always true, but it does hold for all polynomials for any choice of a and for all rational functions at all values of a for
which the rational function is defined.

Theorem 2.6: Limits of Polynomial and Rational Functions

Let and be polynomial functions. Let a be a real number. Then,

To see that this theorem holds, consider the polynomial By applying the

sum, constant multiple, and power laws, we end up with

It now follows from the quotient law that if and are polynomials for which then

Example 2.16 applies this result.
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Example 2.16

Evaluating a Limit of a Rational Function

Evaluate the

Solution

Since 3 is in the domain of the rational function we can calculate the limit by substituting

3 for x into the function. Thus,

Evaluate

Additional Limit Evaluation Techniques
As we have seen, we may evaluate easily the limits of polynomials and limits of some (but not all) rational functions by
direct substitution. However, as we saw in the introductory section on limits, it is certainly possible for to exist

when is undefined. The following observation allows us to evaluate many limits of this type:

If for all over some open interval containing a, then

To understand this idea better, consider the limit

The function

and the function are identical for all values of The graphs of these two functions are shown in Figure
2.24.
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Figure 2.24 The graphs of and are identical for all Their limits at 1 are equal.

We see that

The limit has the form where and (In this case, we say that has the

indeterminate form The following Problem-Solving Strategy provides a general outline for evaluating limits of this
type.

Problem-Solving Strategy: Calculating a Limit When has the Indeterminate Form 0/0

1. First, we need to make sure that our function has the appropriate form and cannot be evaluated immediately
using the limit laws.

2. We then need to find a function that is equal to for all over some interval containing

a. To do this, we may need to try one or more of the following steps:

a. If and are polynomials, we should factor each function and cancel out any common factors.

b. If the numerator or denominator contains a difference involving a square root, we should try
multiplying the numerator and denominator by the conjugate of the expression involving the square
root.

c. If is a complex fraction, we begin by simplifying it.

3. Last, we apply the limit laws.

The next examples demonstrate the use of this Problem-Solving Strategy. Example 2.17 illustrates the factor-and-cancel
technique; Example 2.18 shows multiplying by a conjugate. In Example 2.19, we look at simplifying a complex fraction.
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Example 2.17

Evaluating a Limit by Factoring and Canceling

Evaluate

Solution

Step 1. The function is undefined for In fact, if we substitute 3 into the function

we get which is undefined. Factoring and canceling is a good strategy:

Step 2. For all Therefore,

Step 3. Evaluate using the limit laws:

Evaluate

Example 2.18

Evaluating a Limit by Multiplying by a Conjugate

Evaluate

Solution

Step 1. has the form at −1. Let’s begin by multiplying by the conjugate of

on the numerator and denominator:

Step 2. We then multiply out the numerator. We don’t multiply out the denominator because we are hoping that
the in the denominator cancels out in the end:
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Step 3. Then we cancel:

Step 4. Last, we apply the limit laws:

Evaluate

Example 2.19

Evaluating a Limit by Simplifying a Complex Fraction

Evaluate

Solution

Step 1. has the form at 1. We simplify the algebraic fraction by multiplying by

Step 2. Next, we multiply through the numerators. Do not multiply the denominators because we want to be able
to cancel the factor

Step 3. Then, we simplify the numerator:

Step 4. Now we factor out −1 from the numerator:

Step 5. Then, we cancel the common factors of

Step 6. Last, we evaluate using the limit laws:
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2.16

Evaluate

Example 2.20 does not fall neatly into any of the patterns established in the previous examples. However, with a little
creativity, we can still use these same techniques.

Example 2.20

Evaluating a Limit When the Limit Laws Do Not Apply

Evaluate

Solution
Both and fail to have a limit at zero. Since neither of the two functions has a limit at zero, we
cannot apply the sum law for limits; we must use a different strategy. In this case, we find the limit by performing
addition and then applying one of our previous strategies. Observe that

Thus,

Evaluate

Let’s now revisit one-sided limits. Simple modifications in the limit laws allow us to apply them to one-sided limits. For
example, to apply the limit laws to a limit of the form we require the function to be defined over an

open interval of the form for a limit of the form we require the function to be defined over an

open interval of the form Example 2.21 illustrates this point.

Example 2.21

Evaluating a One-Sided Limit Using the Limit Laws

Evaluate each of the following limits, if possible.

a.
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b.

Solution

Figure 2.25 illustrates the function and aids in our understanding of these limits.

Figure 2.25 The graph shows the function

a. The function is defined over the interval Since this function is not defined to

the left of 3, we cannot apply the limit laws to compute In fact, since is

undefined to the left of 3, does not exist.

b. Since is defined to the right of 3, the limit laws do apply to By applying

these limit laws we obtain

In Example 2.22 we look at one-sided limits of a piecewise-defined function and use these limits to draw a conclusion
about a two-sided limit of the same function.

Example 2.22

Evaluating a Two-Sided Limit Using the Limit Laws

For evaluate each of the following limits:

a.

b.

c.

Solution
Figure 2.26 illustrates the function and aids in our understanding of these limits.
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Figure 2.26 This graph shows a function

a. Since for all x in replace in the limit with and apply the limit

laws:

b. Since for all x in replace in the limit with and apply the

limit laws:

c. Since and we conclude that does not exist.

Graph and evaluate

We now turn our attention to evaluating a limit of the form where where and

That is, has the form at a.

Example 2.23

Evaluating a Limit of the Form Using the Limit Laws

Evaluate

Solution
Step 1. After substituting in we see that this limit has the form That is, as x approaches 2 from the
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left, the numerator approaches −1; and the denominator approaches 0. Consequently, the magnitude of

becomes infinite. To get a better idea of what the limit is, we need to factor the denominator:

Step 2. Since is the only part of the denominator that is zero when 2 is substituted, we then separate
from the rest of the function:

Step 3. and Therefore, the product of and has

a limit of

Evaluate

The Squeeze Theorem
The techniques we have developed thus far work very well for algebraic functions, but we are still unable to evaluate limits
of very basic trigonometric functions. The next theorem, called the squeeze theorem, proves very useful for establishing
basic trigonometric limits. This theorem allows us to calculate limits by “squeezing” a function, with a limit at a point a that
is unknown, between two functions having a common known limit at a. Figure 2.27 illustrates this idea.

Figure 2.27 The Squeeze Theorem applies when
and
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Theorem 2.7: The Squeeze Theorem

Let and be defined for all over an open interval containing a. If

for all in an open interval containing a and

where L is a real number, then

Example 2.24

Applying the Squeeze Theorem

Apply the squeeze theorem to evaluate

Solution
Because for all x, we have . Since from the

squeeze theorem, we obtain The graphs of and are

shown in Figure 2.28.

Figure 2.28 The graphs of and are shown

around the point

Use the squeeze theorem to evaluate

We now use the squeeze theorem to tackle several very important limits. Although this discussion is somewhat lengthy,
these limits prove invaluable for the development of the material in both the next section and the next chapter. The first of
these limits is Consider the unit circle shown in Figure 2.29. In the figure, we see that is the y-coordinate

on the unit circle and it corresponds to the line segment shown in blue. The radian measure of angle θ is the length of the
arc it subtends on the unit circle. Therefore, we see that for
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Figure 2.29 The sine function is shown as a line on the unit
circle.

Because and by using the squeeze theorem we conclude that

To see that as well, observe that for and hence,

Consequently, It follows that An application of the squeeze theorem produces the
desired limit. Thus, since and

(2.16)

Next, using the identity for we see that

(2.17)

We now take a look at a limit that plays an important role in later chapters—namely, To evaluate this limit,

we use the unit circle in Figure 2.30. Notice that this figure adds one additional triangle to Figure 2.30. We see that the
length of the side opposite angle θ in this new triangle is Thus, we see that for
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Figure 2.30 The sine and tangent functions are shown as lines
on the unit circle.

By dividing by in all parts of the inequality, we obtain

Equivalently, we have

Since we conclude that By applying a manipulation similar to that used

in demonstrating that we can show that Thus,

(2.18)

In Example 2.25 we use this limit to establish This limit also proves useful in later chapters.

Example 2.25

Evaluating an Important Trigonometric Limit

Evaluate

Solution
In the first step, we multiply by the conjugate so that we can use a trigonometric identity to convert the cosine in
the numerator to a sine:
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2.20

Therefore,

Evaluate
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Deriving the Formula for the Area of a Circle

Some of the geometric formulas we take for granted today were first derived by methods that anticipate some of the
methods of calculus. The Greek mathematician Archimedes (ca. 287−212; BCE) was particularly inventive, using
polygons inscribed within circles to approximate the area of the circle as the number of sides of the polygon increased.
He never came up with the idea of a limit, but we can use this idea to see what his geometric constructions could have
predicted about the limit.

We can estimate the area of a circle by computing the area of an inscribed regular polygon. Think of the regular
polygon as being made up of n triangles. By taking the limit as the vertex angle of these triangles goes to zero, you can
obtain the area of the circle. To see this, carry out the following steps:

1. Express the height h and the base b of the isosceles triangle in Figure 2.31 in terms of and r.

Figure 2.31

2. Using the expressions that you obtained in step 1, express the area of the isosceles triangle in terms of θ and r.
(Substitute for in your expression.)

3. If an n-sided regular polygon is inscribed in a circle of radius r, find a relationship between θ and n. Solve this
for n. Keep in mind there are 2π radians in a circle. (Use radians, not degrees.)

4. Find an expression for the area of the n-sided polygon in terms of r and θ.

5. To find a formula for the area of the circle, find the limit of the expression in step 4 as θ goes to zero. (Hint:

The technique of estimating areas of regions by using polygons is revisited in Introduction to Integration.
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2.3 EXERCISES
In the following exercises, use the limit laws to evaluate
each limit. Justify each step by indicating the appropriate
limit law(s).

83.

84.

85.

86.

In the following exercises, use direct substitution to
evaluate each limit.

87.

88.

89.

90.

91.

92.

In the following exercises, use direct substitution to show
that each limit leads to the indeterminate form Then,
evaluate the limit.

93.

94.

95.

96.

97.

98. where a is a non-zero real-valued

constant

99.

100.

101.

102.

In the following exercises, use direct substitution to obtain
an undefined expression. Then, use the method of
Example 2.23 to simplify the function to help determine
the limit.

103.

104.

105.

106.

In the following exercises, assume that
and Use

these three facts and the limit laws to evaluate each limit.

107.

108.

109.

110.

111.

112.
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113.

114.

[T] In the following exercises, use a calculator to draw
the graph of each piecewise-defined function and study the
graph to evaluate the given limits.

115.

a.

b.

116.

a.

b.

117.

a.

b.

In the following exercises, use the following graphs and the
limit laws to evaluate each limit.

118.

119.

120.

121.

122.

123.
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124.

125.

126. [T] True or False? If
then

For the following problems, evaluate the limit using the
squeeze theorem. Use a calculator to graph the functions

and when possible.

127. [T]

128. where

129. [T] In physics, the magnitude of an electric field
generated by a point charge at a distance r in vacuum
is governed by Coulomb’s law: where

E represents the magnitude of the electric field, q is the
charge of the particle, r is the distance between the particle
and where the strength of the field is measured, and

is Coulomb’s constant:
a. Use a graphing calculator to graph given that

the charge of the particle is

b. Evaluate What is the physical

meaning of this quantity? Is it physically relevant?
Why are you evaluating from the right?

130. [T] The density of an object is given by its mass
divided by its volume:

a. Use a calculator to plot the volume as a function of
density assuming you are examining

something of mass 8 kg (
b. Evaluate and explain the physical

meaning.
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2.4 | Continuity

Learning Objectives
2.4.1 Explain the three conditions for continuity at a point.
2.4.2 Describe three kinds of discontinuities.
2.4.3 Define continuity on an interval.
2.4.4 State the theorem for limits of composite functions.
2.4.5 Provide an example of the intermediate value theorem.

Many functions have the property that their graphs can be traced with a pencil without lifting the pencil from the page. Such
functions are called continuous. Other functions have points at which a break in the graph occurs, but satisfy this property
over intervals contained in their domains. They are continuous on these intervals and are said to have a discontinuity at a
point where a break occurs.

We begin our investigation of continuity by exploring what it means for a function to have continuity at a point. Intuitively,
a function is continuous at a particular point if there is no break in its graph at that point.

Continuity at a Point
Before we look at a formal definition of what it means for a function to be continuous at a point, let’s consider various
functions that fail to meet our intuitive notion of what it means to be continuous at a point. We then create a list of conditions
that prevent such failures.

Our first function of interest is shown in Figure 2.32. We see that the graph of has a hole at a. In fact, is

undefined. At the very least, for to be continuous at a, we need the following condition:

Figure 2.32 The function is not continuous at a

because is undefined.

However, as we see in Figure 2.33, this condition alone is insufficient to guarantee continuity at the point a. Although
is defined, the function has a gap at a. In this example, the gap exists because does not exist. We must add

another condition for continuity at a—namely,
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Figure 2.33 The function is not continuous at a

because does not exist.

However, as we see in Figure 2.34, these two conditions by themselves do not guarantee continuity at a point. The function
in this figure satisfies both of our first two conditions, but is still not continuous at a. We must add a third condition to our
list:

Figure 2.34 The function is not continuous at a

because

Now we put our list of conditions together and form a definition of continuity at a point.

Definition

A function is continuous at a point a if and only if the following three conditions are satisfied:

i. is defined

ii. exists

iii.

A function is discontinuous at a point a if it fails to be continuous at a.

The following procedure can be used to analyze the continuity of a function at a point using this definition.
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Problem-Solving Strategy: Determining Continuity at a Point

1. Check to see if is defined. If is undefined, we need go no further. The function is not continuous

at a. If is defined, continue to step 2.

2. Compute In some cases, we may need to do this by first computing and

If does not exist (that is, it is not a real number), then the function is not continuous at a and the

problem is solved. If exists, then continue to step 3.

3. Compare and If then the function is not continuous at a. If

then the function is continuous at a.

The next three examples demonstrate how to apply this definition to determine whether a function is continuous at a given
point. These examples illustrate situations in which each of the conditions for continuity in the definition succeed or fail.

Example 2.26

Determining Continuity at a Point, Condition 1

Using the definition, determine whether the function is continuous at Justify

the conclusion.

Solution
Let’s begin by trying to calculate We can see that which is undefined. Therefore,

is discontinuous at 2 because is undefined. The graph of is shown in Figure 2.35.

Figure 2.35 The function is discontinuous at 2 because

is undefined.
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Example 2.27

Determining Continuity at a Point, Condition 2

Using the definition, determine whether the function is continuous at Justify

the conclusion.

Solution
Let’s begin by trying to calculate

Thus, is defined. Next, we calculate To do this, we must compute and

and

Therefore, does not exist. Thus, is not continuous at 3. The graph of is shown in Figure

2.36.

Figure 2.36 The function is not continuous at 3

because does not exist.
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Example 2.28

Determining Continuity at a Point, Condition 3

Using the definition, determine whether the function is continuous at

Solution
First, observe that

Next,

Last, compare and We see that

Since all three of the conditions in the definition of continuity are satisfied, is continuous at

Using the definition, determine whether the function is continuous at

If the function is not continuous at 1, indicate the condition for continuity at a point that fails to hold.

By applying the definition of continuity and previously established theorems concerning the evaluation of limits, we can
state the following theorem.

Theorem 2.8: Continuity of Polynomials and Rational Functions

Polynomials and rational functions are continuous at every point in their domains.

Proof
Previously, we showed that if and are polynomials, for every polynomial and

as long as Therefore, polynomials and rational functions are continuous on their domains.

□

We now apply Continuity of Polynomials and Rational Functions to determine the points at which a given rational
function is continuous.

Example 2.29

Continuity of a Rational Function
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For what values of x is continuous?

Solution

The rational function is continuous for every value of x except

For what values of x is continuous?

Types of Discontinuities
As we have seen in Example 2.26 and Example 2.27, discontinuities take on several different appearances. We
classify the types of discontinuities we have seen thus far as removable discontinuities, infinite discontinuities, or jump
discontinuities. Intuitively, a removable discontinuity is a discontinuity for which there is a hole in the graph, a jump
discontinuity is a noninfinite discontinuity for which the sections of the function do not meet up, and an infinite
discontinuity is a discontinuity located at a vertical asymptote. Figure 2.37 illustrates the differences in these types of
discontinuities. Although these terms provide a handy way of describing three common types of discontinuities, keep in
mind that not all discontinuities fit neatly into these categories.

Figure 2.37 Discontinuities are classified as (a) removable, (b) jump, or (c) infinite.

These three discontinuities are formally defined as follows:

Definition

If is discontinuous at a, then

1. has a removable discontinuity at a if exists. (Note: When we state that exists, we

mean that where L is a real number.)

2. has a jump discontinuity at a if and both exist, but

(Note: When we state that and both exist, we mean that both are real-valued and that

neither take on the values ±∞.)

3. has an infinite discontinuity at a if or
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Example 2.30

Classifying a Discontinuity

In Example 2.26, we showed that is discontinuous at Classify this discontinuity as

removable, jump, or infinite.

Solution
To classify the discontinuity at 2 we must evaluate

Since f is discontinuous at 2 and exists, f has a removable discontinuity at

Example 2.31

Classifying a Discontinuity

In Example 2.27, we showed that is discontinuous at Classify this

discontinuity as removable, jump, or infinite.

Solution
Earlier, we showed that f is discontinuous at 3 because does not exist. However, since

and both exist, we conclude that the function has a jump discontinuity at 3.

Example 2.32

Classifying a Discontinuity

Determine whether is continuous at −1. If the function is discontinuous at −1, classify the

discontinuity as removable, jump, or infinite.

Solution
The function value is undefined. Therefore, the function is not continuous at −1. To determine the type of
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discontinuity, we must determine the limit at −1. We see that and

Therefore, the function has an infinite discontinuity at −1.

For decide whether f is continuous at 1. If f is not continuous at 1, classify the

discontinuity as removable, jump, or infinite.

Continuity over an Interval
Now that we have explored the concept of continuity at a point, we extend that idea to continuity over an interval. As
we develop this idea for different types of intervals, it may be useful to keep in mind the intuitive idea that a function is
continuous over an interval if we can use a pencil to trace the function between any two points in the interval without lifting
the pencil from the paper. In preparation for defining continuity on an interval, we begin by looking at the definition of what
it means for a function to be continuous from the right at a point and continuous from the left at a point.

Continuity from the Right and from the Left

A function is said to be continuous from the right at a if

A function is said to be continuous from the left at a if

A function is continuous over an open interval if it is continuous at every point in the interval. A function is continuous

over a closed interval of the form if it is continuous at every point in and is continuous from the right at a
and is continuous from the left at b. Analogously, a function is continuous over an interval of the form if it is

continuous over and is continuous from the left at b. Continuity over other types of intervals are defined in a similar
fashion.

Requiring that and ensures that we can trace the graph of the function from the

point to the point without lifting the pencil. If, for example, we would need to lift

our pencil to jump from to the graph of the rest of the function over

Example 2.33

Continuity on an Interval

State the interval(s) over which the function is continuous.

Solution

Since is a rational function, it is continuous at every point in its domain. The domain of

is the set Thus, is continuous over each of the intervals
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and

Example 2.34

Continuity over an Interval

State the interval(s) over which the function is continuous.

Solution

From the limit laws, we know that for all values of a in We also know that

exists and exists. Therefore, is continuous over the interval

State the interval(s) over which the function is continuous.

The Composite Function Theorem allows us to expand our ability to compute limits. In particular, this theorem
ultimately allows us to demonstrate that trigonometric functions are continuous over their domains.

Theorem 2.9: Composite Function Theorem

If is continuous at L and then

Before we move on to Example 2.35, recall that earlier, in the section on limit laws, we showed

Consequently, we know that is continuous at 0. In Example 2.35 we see how to combine this result with the

composite function theorem.

Example 2.35

Limit of a Composite Cosine Function

Evaluate

Solution
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The given function is a composite of and Since and is continuous at 0,

we may apply the composite function theorem. Thus,

Evaluate

The proof of the next theorem uses the composite function theorem as well as the continuity of and

at the point 0 to show that trigonometric functions are continuous over their entire domains.

Theorem 2.10: Continuity of Trigonometric Functions

Trigonometric functions are continuous over their entire domains.

Proof
We begin by demonstrating that is continuous at every real number. To do this, we must show that

for all values of a.

The proof that is continuous at every real number is analogous. Because the remaining trigonometric functions may
be expressed in terms of and their continuity follows from the quotient limit law.

□

As you can see, the composite function theorem is invaluable in demonstrating the continuity of trigonometric functions.
As we continue our study of calculus, we revisit this theorem many times.

The Intermediate Value Theorem
Functions that are continuous over intervals of the form where a and b are real numbers, exhibit many useful
properties. Throughout our study of calculus, we will encounter many powerful theorems concerning such functions. The
first of these theorems is the Intermediate Value Theorem.

Theorem 2.11: The Intermediate Value Theorem

Let f be continuous over a closed, bounded interval If z is any real number between and then there

is a number c in satisfying in Figure 2.38.
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Figure 2.38 There is a number that satisfies

Example 2.36

Application of the Intermediate Value Theorem

Show that has at least one zero.

Solution
Since is continuous over it is continuous over any closed interval of the form

If you can find an interval such that and have opposite signs, you can use the

Intermediate Value Theorem to conclude there must be a real number c in that satisfies Note

that

and

Using the Intermediate Value Theorem, we can see that there must be a real number c in that satisfies
Therefore, has at least one zero.

Example 2.37

When Can You Apply the Intermediate Value Theorem?

If is continuous over and can we use the Intermediate Value Theorem to

conclude that has no zeros in the interval Explain.
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Solution
No. The Intermediate Value Theorem only allows us to conclude that we can find a value between and

it doesn’t allow us to conclude that we can’t find other values. To see this more clearly, consider the

function It satisfies and

Example 2.38

When Can You Apply the Intermediate Value Theorem?

For and Can we conclude that has a zero in the interval

Solution
No. The function is not continuous over The Intermediate Value Theorem does not apply here.

Show that has a zero over the interval
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2.4 EXERCISES
For the following exercises, determine the point(s), if any,
at which each function is discontinuous. Classify any
discontinuity as jump, removable, infinite, or other.

131.

132.

133.

134.

135.

136.

137.

138.

For the following exercises, decide if the function
continuous at the given point. If it is discontinuous, what
type of discontinuity is it?

139. at

140. at

141. at

142. at

143. at

144. at

In the following exercises, find the value(s) of k that makes
each function continuous over the given interval.

145.

146.

147.

148.

149.

In the following exercises, use the Intermediate Value
Theorem (IVT).

150. Let Over the interval

there is no value of x such that
although and Explain why this
does not contradict the IVT.

151. A particle moving along a line has at each time t
a position function which is continuous. Assume

and Another particle moves such that
its position is given by Explain why there
must be a value c for such that

152. [T] Use the statement “The cosine of t is equal to t
cubed.”

a. Write a mathematical equation of the statement.
b. Prove that the equation in part a. has at least one

real solution.
c. Use a calculator to find an interval of length 0.01

that contains a solution.

153. Apply the IVT to determine whether has
a solution in one of the intervals or

Briefly explain your response for each
interval.
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154. Consider the graph of the function shown

in the following graph.

a. Find all values for which the function is
discontinuous.

b. For each value in part a., state why the formal
definition of continuity does not apply.

c. Classify each discontinuity as either jump,
removable, or infinite.

155. Let

a. Sketch the graph of f.
b. Is it possible to find a value k such that

which makes continuous for all real

numbers? Briefly explain.

156. Let for

a. Sketch the graph of f.
b. Is it possible to find values and such that

and and that makes

continuous for all real numbers? Briefly

explain.

157. Sketch the graph of the function with

properties i. through vii.
i. The domain of f is

ii. f has an infinite discontinuity at
iii.

iv.

v.

vi. f is left continuous but not right continuous at

vii. and

158. Sketch the graph of the function with

properties i. through iv.
i. The domain of f is

ii. and exist and are equal.

iii. is left continuous but not continuous at

and right continuous but not continuous at

iv. has a removable discontinuity at a

jump discontinuity at and the following
limits hold: and

In the following exercises, suppose is defined for

all x. For each description, sketch a graph with the indicated
property.

159. Discontinuous at with and

160. Discontinuous at but continuous elsewhere

with

Determine whether each of the given statements is true.
Justify your response with an explanation or
counterexample.

161. is continuous everywhere.

162. If the left- and right-hand limits of as

exist and are equal, then f cannot be discontinuous at

163. If a function is not continuous at a point, then it is not
defined at that point.

164. According to the IVT, has a
solution over the interval

165. If is continuous such that and have

opposite signs, then has exactly one solution in

166. The function is continuous

over the interval
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167. If is continuous everywhere and

then there is no root of in the

interval

[T] The following problems consider the scalar form of
Coulomb’s law, which describes the electrostatic force
between two point charges, such as electrons. It is given by

the equation where is Coulomb’s

constant, are the magnitudes of the charges of the two

particles, and r is the distance between the two particles.

168. To simplify the calculation of a model with many
interacting particles, after some threshold value
we approximate F as zero.

a. Explain the physical reasoning behind this
assumption.

b. What is the force equation?
c. Evaluate the force F using both Coulomb’s law

and our approximation, assuming two protons with
a charge magnitude of

and the

Coulomb constant are
1 m apart. Also, assume How much
inaccuracy does our approximation generate? Is our
approximation reasonable?

d. Is there any finite value of R for which this system
remains continuous at R?

169. Instead of making the force 0 at R, instead we let
the force be 10−20 for Assume two protons, which

have a magnitude of charge and the

Coulomb constant Is there a
value R that can make this system continuous? If so, find
it.

Recall the discussion on spacecraft from the chapter
opener. The following problems consider a rocket launch
from Earth’s surface. The force of gravity on the rocket is
given by where m is the mass of the
rocket, d is the distance of the rocket from the center of
Earth, and k is a constant.

170. [T] Determine the value and units of k given that the
mass of the rocket is 3 million kg. (Hint: The distance from
the center of Earth to its surface is 6378 km.)

171. [T] After a certain distance D has passed, the
gravitational effect of Earth becomes quite negligible, so
we can approximate the force function by

Using the value of k found in

the previous exercise, find the necessary condition D such
that the force function remains continuous.

172. As the rocket travels away from Earth’s surface, there
is a distance D where the rocket sheds some of its mass,
since it no longer needs the excess fuel storage. We can

write this function as Is there

a D value such that this function is continuous, assuming

Prove the following functions are continuous everywhere

173.

174.

175. Where is continuous?
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2.5 | The Precise Definition of a Limit

Learning Objectives
2.5.1 Describe the epsilon-delta definition of a limit.
2.5.2 Apply the epsilon-delta definition to find the limit of a function.
2.5.3 Describe the epsilon-delta definitions of one-sided limits and infinite limits.
2.5.4 Use the epsilon-delta definition to prove the limit laws.

By now you have progressed from the very informal definition of a limit in the introduction of this chapter to the intuitive
understanding of a limit. At this point, you should have a very strong intuitive sense of what the limit of a function means
and how you can find it. In this section, we convert this intuitive idea of a limit into a formal definition using precise
mathematical language. The formal definition of a limit is quite possibly one of the most challenging definitions you will
encounter early in your study of calculus; however, it is well worth any effort you make to reconcile it with your intuitive
notion of a limit. Understanding this definition is the key that opens the door to a better understanding of calculus.

Quantifying Closeness
Before stating the formal definition of a limit, we must introduce a few preliminary ideas. Recall that the distance between
two points a and b on a number line is given by

• The statement may be interpreted as: The distance between and L is less than ε.

• The statement may be interpreted as: and the distance between x and a is less than δ.

It is also important to look at the following equivalences for absolute value:

• The statement is equivalent to the statement

• The statement is equivalent to the statement and

With these clarifications, we can state the formal epsilon-delta definition of the limit.

Definition

Let be defined for all over an open interval containing a. Let L be a real number. Then

if, for every there exists a such that if then

This definition may seem rather complex from a mathematical point of view, but it becomes easier to understand if we
break it down phrase by phrase. The statement itself involves something called a universal quantifier (for every an

existential quantifier (there exists a and, last, a conditional statement (if then

Let’s take a look at Table 2.9, which breaks down the definition and translates each part.
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Definition Translation

1. For every 1. For every positive distance ε from L,

2. there exists a 2. There is a positive distance from a,

3. such that 3. such that

4. if then 4. if x is closer than to a and then is closer than

ε to L.

Table 2.9 Translation of the Epsilon-Delta Definition of the Limit

We can get a better handle on this definition by looking at the definition geometrically. Figure 2.39 shows possible values
of for various choices of for a given function a number a, and a limit L at a. Notice that as we choose

smaller values of ε (the distance between the function and the limit), we can always find a small enough so that if we
have chosen an x value within of a, then the value of is within ε of the limit L.

Figure 2.39 These graphs show possible values of , given successively smaller choices of ε.

Visit the following applet to experiment with finding values of for selected values of ε:

• The epsilon-delta definition of limit (http://www.openstax.org/l/20_epsilondelt)

Example 2.39 shows how you can use this definition to prove a statement about the limit of a specific function at a
specified value.

Example 2.39

Proving a Statement about the Limit of a Specific Function

Prove that

Solution
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Let

The first part of the definition begins “For every This means we must prove that whatever follows is true
no matter what positive value of ε is chosen. By stating “Let we signal our intent to do so.

Choose

The definition continues with “there exists a ” The phrase “there exists” in a mathematical statement is
always a signal for a scavenger hunt. In other words, we must go and find So, where exactly did
come from? There are two basic approaches to tracking down One method is purely algebraic and the other is
geometric.

We begin by tackling the problem from an algebraic point of view. Since ultimately we want
we begin by manipulating this expression: is equivalent to which in turn
is equivalent to Last, this is equivalent to Thus, it would seem that is
appropriate.

We may also find through geometric methods. Figure 2.40 demonstrates how this is done.

Figure 2.40 This graph shows how we find geometrically.

Assume When has been chosen, our goal is to show that if then
To prove any statement of the form “If this, then that,” we begin by assuming “this” and

trying to get “that.”

Thus,

Analysis
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In this part of the proof, we started with and used our assumption in a key part
of the chain of inequalities to get to be less than ε. We could just as easily have manipulated the
assumed inequality to arrive at as follows:

Therefore, (Having completed the proof, we state what we have accomplished.)

After removing all the remarks, here is a final version of the proof:

Let

Choose

Assume

Thus,

Therefore,

The following Problem-Solving Strategy summarizes the type of proof we worked out in Example 2.39.

Problem-Solving Strategy: Proving That for a Specific Function

1. Let’s begin the proof with the following statement: Let

2. Next, we need to obtain a value for After we have obtained this value, we make the following statement,
filling in the blank with our choice of : Choose

3. The next statement in the proof should be (at this point, we fill in our given value for a):
Assume

4. Next, based on this assumption, we need to show that where and L are our function

and our limit L. At some point, we need to use

5. We conclude our proof with the statement: Therefore,
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Example 2.40

Proving a Statement about a Limit

Complete the proof that by filling in the blanks.

Let _____.

Choose

Assume

Thus,

Solution
We begin by filling in the blanks where the choices are specified by the definition. Thus, we have

Let

Choose

Assume (or equivalently,

Thus,

Focusing on the final line of the proof, we see that we should choose

We now complete the final write-up of the proof:

Let

Choose

Assume (or equivalently,

Thus,

Complete the proof that by filling in the blanks.

Let _______.

Choose

Assume

Thus,

Therefore,

In Example 2.39 and Example 2.40, the proofs were fairly straightforward, since the functions with which we were
working were linear. In Example 2.41, we see how to modify the proof to accommodate a nonlinear function.

Example 2.41
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Proving a Statement about the Limit of a Specific Function (Geometric Approach)

Prove that

Solution
1. Let The first part of the definition begins “For every so we must prove that whatever

follows is true no matter what positive value of ε is chosen. By stating “Let we signal our intent
to do so.

2. Without loss of generality, assume Two questions present themselves: Why do we want
and why is it okay to make this assumption? In answer to the first question: Later on, in the process of
solving for we will discover that involves the quantity Consequently, we need In
answer to the second question: If we can find that “works” for then it will “work” for any

as well. Keep in mind that, although it is always okay to put an upper bound on ε, it is never okay
to put a lower bound (other than zero) on ε.

3. Choose Figure 2.41 shows how we made this choice of

Figure 2.41 This graph shows how we find δ geometrically for a given ε
for the proof in Example 2.41.

4. We must show: If then so we must begin by assuming

We don’t really need (in other words, for this proof. Since
it is okay to drop

Hence,

Recall that Thus, and consequently

We also use here. We might ask at this point: Why did we

substitute for on the left-hand side of the inequality and on the right-hand

side of the inequality? If we look at Figure 2.41, we see that corresponds to the distance on
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the left of 2 on the x-axis and corresponds to the distance on the right. Thus,

We simplify the expression on the left:

Then, we add 2 to all parts of the inequality:

We square all parts of the inequality. It is okay to do so, since all parts of the inequality are positive:

We subtract 4 from all parts of the inequality:

Last,

5. Therefore,

Find δ corresponding to for a proof that

The geometric approach to proving that the limit of a function takes on a specific value works quite well for some functions.
Also, the insight into the formal definition of the limit that this method provides is invaluable. However, we may also
approach limit proofs from a purely algebraic point of view. In many cases, an algebraic approach may not only provide
us with additional insight into the definition, it may prove to be simpler as well. Furthermore, an algebraic approach is the
primary tool used in proofs of statements about limits. For Example 2.42, we take on a purely algebraic approach.

Example 2.42

Proving a Statement about the Limit of a Specific Function (Algebraic Approach)

Prove that

Solution
Let’s use our outline from the Problem-Solving Strategy:

1. Let

2. Choose This choice of may appear odd at first glance, but it was obtained by
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taking a look at our ultimate desired inequality: This inequality is equivalent

to At this point, the temptation simply to choose is very strong.

Unfortunately, our choice of must depend on ε only and no other variable. If we can replace by
a numerical value, our problem can be resolved. This is the place where assuming comes into play.
The choice of here is arbitrary. We could have just as easily used any other positive number. In
some proofs, greater care in this choice may be necessary. Now, since and we
are able to show that Consequently, At this point we realize
that we also need Thus, we choose

3. Assume Thus,

Since we may conclude that Thus, by subtracting 4 from all parts of the
inequality, we obtain Consequently, This gives us

Therefore,

Complete the proof that

Let choose assume

Since we may conclude that Thus, Hence,

You will find that, in general, the more complex a function, the more likely it is that the algebraic approach is the easiest to
apply. The algebraic approach is also more useful in proving statements about limits.

Proving Limit Laws
We now demonstrate how to use the epsilon-delta definition of a limit to construct a rigorous proof of one of the limit laws.
The triangle inequality is used at a key point of the proof, so we first review this key property of absolute value.

Definition

The triangle inequality states that if a and b are any real numbers, then

Proof

We prove the following limit law: If and then

Let

Choose so that if then

Choose so that if then
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Choose

Assume

Thus,

Hence,

□

We now explore what it means for a limit not to exist. The limit does not exist if there is no real number L for

which Thus, for all real numbers L, To understand what this means, we look at each part

of the definition of together with its opposite. A translation of the definition is given in Table 2.10.

Definition Opposite

1. For every 1. There exists so that

2. there exists a so that 2. for every

3. if then 3. There is an x satisfying so that

Table 2.10 Translation of the Definition of and its Opposite

Finally, we may state what it means for a limit not to exist. The limit does not exist if for every real number L,

there exists a real number so that for all there is an x satisfying so that

Let’s apply this in Example 2.43 to show that a limit does not exist.

Example 2.43

Showing That a Limit Does Not Exist

Show that does not exist. The graph of is shown here:
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Solution
Suppose that L is a candidate for a limit. Choose

Let Either or If then let Thus,

and

On the other hand, if then let Thus,

and

Thus, for any value of L,

One-Sided and Infinite Limits
Just as we first gained an intuitive understanding of limits and then moved on to a more rigorous definition of a limit,
we now revisit one-sided limits. To do this, we modify the epsilon-delta definition of a limit to give formal epsilon-delta
definitions for limits from the right and left at a point. These definitions only require slight modifications from the definition
of the limit. In the definition of the limit from the right, the inequality replaces which
ensures that we only consider values of x that are greater than (to the right of) a. Similarly, in the definition of the limit from
the left, the inequality replaces which ensures that we only consider values of x that
are less than (to the left of) a.

Definition

Limit from the Right: Let be defined over an open interval of the form where Then,
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if for every there exists a such that if then

Limit from the Left: Let be defined over an open interval of the form where Then,

if for every there exists a such that if then

Example 2.44

Proving a Statement about a Limit From the Right

Prove that

Solution
Let

Choose Since we ultimately want we manipulate this inequality to get

or, equivalently, making a clear choice. We may also determine geometrically, as
shown in Figure 2.42.

Figure 2.42 This graph shows how we find δ for the proof in
Example 2.44.

Assume Thus, Hence, Finally,

Therefore,

Find corresponding to ε for a proof that

We conclude the process of converting our intuitive ideas of various types of limits to rigorous formal definitions by
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pursuing a formal definition of infinite limits. To have we want the values of the function

to get larger and larger as x approaches a. Instead of the requirement that for arbitrarily small ε when

for small enough we want for arbitrarily large positive M when for small

enough Figure 2.43 illustrates this idea by showing the value of for successively larger values of M.

Figure 2.43 These graphs plot values of for M to show that

Definition

Let be defined for all in an open interval containing a. Then, we have an infinite limit

if for every there exists such that if then

Let be defined for all in an open interval containing a. Then, we have a negative infinite limit

if for every there exists such that if then
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2.5 EXERCISES
In the following exercises, write the appropriate
definition for each of the given statements.

176.

177.

178.

179.

The following graph of the function f satisfies
In the following exercises, determine a

value of that satisfies each statement.

180. If then

181. If then

The following graph of the function f satisfies
In the following exercises, determine a

value of that satisfies each statement.

182. If then

183. If then

The following graph of the function f satisfies
In the following exercises, for each value

of ε, find a value of such that the precise definition
of limit holds true.

184.

185.

[T] In the following exercises, use a graphing calculator to
find a number such that the statements hold true.

186. whenever
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187.

In the following exercises, use the precise definition of
limit to prove the given limits.

188.

189.

190.

191.

192.

In the following exercises, use the precise definition of
limit to prove the given one-sided limits.

193.

194.

195.

In the following exercises, use the precise definition of
limit to prove the given infinite limits.

196.

197.

198.

199. An engineer is using a machine to cut a flat square
of Aerogel of area 144 cm2. If there is a maximum error
tolerance in the area of 8 cm2, how accurately must the
engineer cut on the side, assuming all sides have the same
length? How do these numbers relate to ε, a, and L?

200. Use the precise definition of limit to prove that the

following limit does not exist:

201. Using precise definitions of limits, prove that
does not exist, given that is the ceiling

function. (Hint: Try any

202. Using precise definitions of limits, prove that

does not exist:

(Hint: Think about how you can always choose a rational
number but

203. Using precise definitions of limits, determine

for (Hint: Break

into two cases, x rational and x irrational.)

204. Using the function from the previous exercise, use
the precise definition of limits to show that does

not exist for

For the following exercises, suppose that

and both exist. Use the precise definition

of limits to prove the following limit laws:

205.

206. for any real constant c (Hint:

Consider two cases: and

207. (Hint:
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average velocity

constant multiple law for limits

continuity at a point

continuity from the left

continuity from the right

continuity over an interval

difference law for limits

differential calculus

discontinuity at a point

epsilon-delta definition of the limit

infinite discontinuity

infinite limit

instantaneous velocity

integral calculus

Intermediate Value Theorem

intuitive definition of the limit

jump discontinuity

limit

CHAPTER 2 REVIEW

KEY TERMS
the change in an object’s position divided by the length of a time period; the average velocity of an

object over a time interval (if or if , with a position given by that is

the limit law

A function is continuous at a point a if and only if the following three conditions are

satisfied: (1) is defined, (2) exists, and (3)

A function is continuous from the left at b if

A function is continuous from the right at a if

a function that can be traced with a pencil without lifting the pencil; a function is
continuous over an open interval if it is continuous at every point in the interval; a function is continuous over a

closed interval of the form if it is continuous at every point in and it is continuous from the right at a
and from the left at b

the limit law

the field of calculus concerned with the study of derivatives and their applications

A function is discontinuous at a point or has a discontinuity at a point if it is not continuous at
the point

if for every there exists a such that if

then

An infinite discontinuity occurs at a point a if or

A function has an infinite limit at a point a if it either increases or decreases without bound as it approaches
a

The instantaneous velocity of an object with a position function that is given by is the
value that the average velocities on intervals of the form and approach as the values of t move closer to

provided such a value exists

the study of integrals and their applications

Let f be continuous over a closed bounded interval if z is any real number
between and then there is a number c in satisfying

If all values of the function approach the real number L as the values of

approach a, approaches L

A jump discontinuity occurs at a point a if and both exist, but

the process of letting x or t approach a in an expression; the limit of a function as x approaches a is the value
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limit laws

multivariable calculus

one-sided limit

power law for limits

product law for limits

quotient law for limits

removable discontinuity

root law for limits

secant

squeeze theorem

sum law for limits

tangent

triangle inequality

vertical asymptote

that approaches as x approaches a

the individual properties of limits; for each of the individual laws, let and be defined for all

over some open interval containing a; assume that L and M are real numbers so that and

let c be a constant

the study of the calculus of functions of two or more variables

A one-sided limit of a function is a limit taken from either the left or the right

the limit law for every positive integer n

the limit law

the limit law for

A removable discontinuity occurs at a point a if is discontinuous at a, but

exists

the limit law for all L if n is odd and for if n is even

A secant line to a function at a is a line through the point and another point on the function; the

slope of the secant line is given by

states that if for all over an open interval containing a and

where L is a real number, then

The limit law

A tangent line to the graph of a function at a point is the line that secant lines through

approach as they are taken through points on the function with x-values that approach a; the slope of the tangent line
to a graph at a measures the rate of change of the function at a

If a and b are any real numbers, then

A function has a vertical asymptote at if the limit as x approaches a from the right or left is
infinite

KEY EQUATIONS
• Slope of a Secant Line

• Average Velocity over Interval

• Intuitive Definition of the Limit

• Two Important Limits

• One-Sided Limits
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• Infinite Limits from the Left

• Infinite Limits from the Right

• Two-Sided Infinite Limits
and

and

• Basic Limit Results

• Important Limits

KEY CONCEPTS
2.1 A Preview of Calculus

• Differential calculus arose from trying to solve the problem of determining the slope of a line tangent to a curve at a
point. The slope of the tangent line indicates the rate of change of the function, also called the derivative. Calculating
a derivative requires finding a limit.

• Integral calculus arose from trying to solve the problem of finding the area of a region between the graph of a
function and the x-axis. We can approximate the area by dividing it into thin rectangles and summing the areas of
these rectangles. This summation leads to the value of a function called the integral. The integral is also calculated
by finding a limit and, in fact, is related to the derivative of a function.

• Multivariable calculus enables us to solve problems in three-dimensional space, including determining motion in
space and finding volumes of solids.

2.2 The Limit of a Function

• A table of values or graph may be used to estimate a limit.

• If the limit of a function at a point does not exist, it is still possible that the limits from the left and right at that point
may exist.

• If the limits of a function from the left and right exist and are equal, then the limit of the function is that common
value.

• We may use limits to describe infinite behavior of a function at a point.

2.3 The Limit Laws

• The limit laws allow us to evaluate limits of functions without having to go through step-by-step processes each
time.

• For polynomials and rational functions,
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• You can evaluate the limit of a function by factoring and canceling, by multiplying by a conjugate, or by simplifying
a complex fraction.

• The squeeze theorem allows you to find the limit of a function if the function is always greater than one function
and less than another function with limits that are known.

2.4 Continuity

• For a function to be continuous at a point, it must be defined at that point, its limit must exist at the point, and the
value of the function at that point must equal the value of the limit at that point.

• Discontinuities may be classified as removable, jump, or infinite.

• A function is continuous over an open interval if it is continuous at every point in the interval. It is continuous over
a closed interval if it is continuous at every point in its interior and is continuous at its endpoints.

• The composite function theorem states: If is continuous at L and then

• The Intermediate Value Theorem guarantees that if a function is continuous over a closed interval, then the function
takes on every value between the values at its endpoints.

2.5 The Precise Definition of a Limit

• The intuitive notion of a limit may be converted into a rigorous mathematical definition known as the epsilon-delta
definition of the limit.

• The epsilon-delta definition may be used to prove statements about limits.

• The epsilon-delta definition of a limit may be modified to define one-sided limits.

CHAPTER 2 REVIEW EXERCISES
True or False. In the following exercises, justify your
answer with a proof or a counterexample.

208. A function has to be continuous at if the
exists.

209. You can use the quotient rule to evaluate

210. If there is a vertical asymptote at for the
function then f is undefined at the point

211. If does not exist, then f is undefined at the

point

212. Using the graph, find each limit or explain why the
limit does not exist.

a.

b.

c.

d.

In the following exercises, evaluate the limit algebraically
or explain why the limit does not exist.

213.
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214.

215.

216.

217.

218.

219.

220.

221.

222.

In the following exercises, use the squeeze theorem to
prove the limit.

223.

224.

225. Determine the domain such that the function
is continuous over its domain.

In the following exercises, determine the value of c such
that the function remains continuous. Draw your resulting
function to ensure it is continuous.

226.

227.

In the following exercises, use the precise definition of
limit to prove the limit.

228.

229.

230. A ball is thrown into the air and the vertical position
is given by Use the Intermediate
Value Theorem to show that the ball must land on the
ground sometime between 5 sec and 6 sec after the throw.

231. A particle moving along a line has a displacement
according to the function where x is
measured in meters and t is measured in seconds. Find the
average velocity over the time period

232. From the previous exercises, estimate the
instantaneous velocity at by checking the average
velocity within
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