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2 | LIMITS

Figure 2.1 The vision of human exploration by the National Aeronautics and Space Administration (NASA) to distant parts of
the universe illustrates the idea of space travel at high speeds. But, is there a limit to how fast a spacecraft can go? (credit:
NASA)
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2.4 Continuity

2.5 The Precise Definition of a Limit

Introduction

Science fiction writers often imagine spaceships that can travel to far-off planets in distant galaxies. However, back in 1905,
Albert Einstein showed that a limit exists to how fast any object can travel. The problem is that the faster an object moves,
the more mass it attains (in the form of energy), according to the equation

moy
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where my is the object’s mass at rest, v is its speed, and c is the speed of light. What is this speed limit? (We explore this
problem further in Example 2.12.)

The idea of a limit is central to all of calculus. We begin this chapter by examining why limits are so important. Then, we
go on to describe how to find the limit of a function at a given point. Not all functions have limits at all points, and we
discuss what this means and how we can tell if a function does or does not have a limit at a particular value. This chapter has
been created in an informal, intuitive fashion, but this is not always enough if we need to prove a mathematical statement
involving limits. The last section of this chapter presents the more precise definition of a limit and shows how to prove
whether a function has a limit.

2.1 | A Preview of Calculus

Learning Objectives

2.1.1 Describe the tangent problem and how it led to the idea of a derivative.

2.1.2 Explain how the idea of a limit is involved in solving the tangent problem.

2.1.3 Recognize a tangent to a curve at a point as the limit of secant lines.

2.1.4 Identify instantaneous velocity as the limit of average velocity over a small time interval.
2.1.5 Describe the area problem and how it was solved by the integral.

2.1.6 Explain how the idea of a limit is involved in solving the area problem.

2.1.7 Recognize how the ideas of limit, derivative, and integral led to the studies of infinite series
and multivariable calculus.

As we embark on our study of calculus, we shall see how its development arose from common solutions to practical
problems in areas such as engineering physics—like the space travel problem posed in the chapter opener. Two key
problems led to the initial formulation of calculus: (1) the tangent problem, or how to determine the slope of a line tangent
to a curve at a point; and (2) the area problem, or how to determine the area under a curve.

The Tangent Problem and Differential Calculus

Rate of change is one of the most critical concepts in calculus. We begin our investigation of rates of change by looking at
the graphs of the three lines f(x) = —2x -3, g(x) = %x + 1, and A(x) =2, shown in Figure 2.2.

yi i i

f(xX) = —2x — 3 gx) =5 +1 h(x) = 2

Figure 2.2 The rate of change of a linear function is constant in each of these three graphs, with the constant determined by the
slope.

As we move from left to right along the graph of f(x) = —2x — 3, we see that the graph decreases at a constant rate. For

every 1 unit we move to the right along the x-axis, the y-coordinate decreases by 2 units. This rate of change is determined
by the slope (-2) of the line. Similarly, the slope of 1/2 in the function g(x) tells us that for every change in x of 1 unit

there is a corresponding change in y of 1/2 unit. The function A(x) = 2 has a slope of zero, indicating that the values of the

function remain constant. We see that the slope of each linear function indicates the rate of change of the function.
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Compare the graphs of these three functions with the graph of k(x) = x? (Figure 2.3). The graph of k(x) = x?2 starts from

the left by decreasing rapidly, then begins to decrease more slowly and level off, and then finally begins to increase—slowly
at first, followed by an increasing rate of increase as it moves toward the right. Unlike a linear function, no single number
represents the rate of change for this function. We quite naturally ask: How do we measure the rate of change of a nonlinear
function?

y

k(x) = x°
Figure 2.3 The function k(x) = x2 does not have a constant

rate of change.

We can approximate the rate of change of a function f(x) ata point (@, f(a)) on its graph by taking another point (x, f(x))
on the graph of f(x), drawing a line through the two points, and calculating the slope of the resulting line. Such a line is

called a secant line. Figure 2.4 shows a secant line to a function f(x) at a point (a, f(a)).

y

(x, f(x))

(@ f(a)

a X

slope of secant line

Figure 2.4 The slope of a secant line through a point
(@, f(a)) estimates the rate of change of the function at the

point (a, f(a)).

We formally define a secant line as follows:
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Definition

The secant to the function f(x) through the points (a, f(a)) and (x, f(x)) is the line passing through these points. Its
slope is given by

£6) = f(@) 1)

Mgec = X—a

The accuracy of approximating the rate of change of the function with a secant line depends on how close x is to a. As we
see in Figure 2.5, if x is closer to a, the slope of the secant line is a better measure of the rate of change of f(x) ata.

y

(x, 1(0) iSauibeld
(@ f(@))
a x x X
- f(x) — f(a)
slope of secant line = ————

Figure 2.5 As x gets closer to a, the slope of the secant line
becomes a better approximation to the rate of change of the
function f(x) ata.

The secant lines themselves approach a line that is called the tangent to the function f(x) at a (Figure 2.6). The slope of

the tangent line to the graph at a measures the rate of change of the function at a. This value also represents the derivative of
the function f(x) at a, or the rate of change of the function at a. This derivative is denoted by f” (a). Differential calculus

is the field of calculus concerned with the study of derivatives and their applications.

For an interactive demonstration of the slope of a secant line that you can manipulate yourself, visit this applet
(Note: this site requires a Java browser plugin): Math Insight (http://lwww.openstax.org/l/20 _mathinsight)

tangent
line
(x, f(x))

(@ f(a)

Figure 2.6 Solving the Tangent Problem: As x approaches a,
the secant lines approach the tangent line.
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Example 2.1 illustrates how to find slopes of secant lines. These slopes estimate the slope of the tangent line or,
equivalently, the rate of change of the function at the point at which the slopes are calculated.

Example 2.1

Finding Slopes of Secant Lines

Estimate the slope of the tangent line (rate of change) to f(x) = x> atx=1 by finding slopes of secant lines

through (1, 1) and each of the following points on the graph of f(x) = x2.

a (2,4

39

b (33)
Solution

Use the formula for the slope of a secant line from the definition.

a. msec=%=3
1 s

b, Mgec =3 1=§=2.5
3-

The point in part b. is closer to the point (1, 1), so the slope of 2.5 is closer to the slope of the tangent line. A
good estimate for the slope of the tangent would be in the range of 2 to 2.5 (Figure 2.7).

y y
64 6+
54 51
4t 4
3t 3
24 2
14 1
2 -1 9 /1 2 3% 1 2 3X

_1__

_2.

4+

@ (b)

Figure 2.7 The secant lines to f(x) = x? at (1, 1) through
(@) (2, 4) and (b) (%, %) provide successively closer

approximations to the tangent line to f(x) = x% at 1, 1.
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@ 2.1  Estimate the slope of the tangent line (rate of change) to f(x) = x>atx=1 by finding slopes of secant

lines through (1, 1) and the point (%, %) on the graph of f(x) = x%.

We continue our investigation by exploring a related question. Keeping in mind that velocity may be thought of as the rate
of change of position, suppose that we have a function, s(¢), that gives the position of an object along a coordinate axis

at any given time t. Can we use these same ideas to create a reasonable definition of the instantaneous velocity at a given
time ¢ = a? We start by approximating the instantaneous velocity with an average velocity. First, recall that the speed of

an object traveling at a constant rate is the ratio of the distance traveled to the length of time it has traveled. We define the
average velocity of an object over a time period to be the change in its position divided by the length of the time period.

Definition

Let s(z) be the position of an object moving along a coordinate axis at time t. The average velocity of the object over

a time interval [a, ] where a <t (or [z, a] if t < a) is

s(t) — s(a). (2.2)

Vave =~ 1 —¢4

As t is chosen closer to a, the average velocity becomes closer to the instantaneous velocity. Note that finding the average
velocity of a position function over a time interval is essentially the same as finding the slope of a secant line to a function.
Furthermore, to find the slope of a tangent line at a point a, we let the x-values approach a in the slope of the secant line.
Similarly, to find the instantaneous velocity at time a, we let the t-values approach a in the average velocity. This process
of letting x or t approach a in an expression is called taking a limit. Thus, we may define the instantaneous velocity as
follows.

Definition

For a position function s(¢#), the instantaneous velocity at a time 7 = a is the value that the average velocities

approach on intervals of the form [a, ¢] and [#, a] as the values of t become closer to a, provided such a value exists.

Example 2.2 illustrates this concept of limits and average velocity.

Example 2.2

Finding Average Velocity

A rock is dropped from a height of 64 ft. It is determined that its height (in feet) above ground ¢t seconds later (for
0<t<?2) is given by s(t) = —16¢% + 64. Find the average velocity of the rock over each of the given time

intervals. Use this information to guess the instantaneous velocity of the rock at time 7 = 0.5.

a. [0.49, 0.5]
b. [0.5, 0.51]
Solution

Substitute the data into the formula for the definition of average velocity.

SRR ES1OE NP
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_ 5(0.51) = 5(0.5) _

b. vae = T a2 = 1616

The instantaneous velocity is somewhere between —15.84 and —16.16 ft/sec. A good guess might be —16 ft/sec.

2.2 An object moves along a coordinate axis so that its position at time ¢ is given by s(¢) = #3. Estimate its

instantaneous velocity at time ¢ = 2 by computing its average velocity over the time interval [2, 2.001].

The Area Problem and Integral Calculus

We now turn our attention to a classic question from calculus. Many quantities in physics—for example, quantities of
work—may be interpreted as the area under a curve. This leads us to ask the question: How can we find the area between
the graph of a function and the x-axis over an interval (Figure 2.8)?

y
fx)

A

e b X

Figure 2.8 The Area Problem: How do we find the area of the
shaded region?

As in the answer to our previous questions on velocity, we first try to approximate the solution. We approximate the area by
dividing up the interval [a, b] into smaller intervals in the shape of rectangles. The approximation of the area comes from

adding up the areas of these rectangles (Figure 2.9).
y

f(x)

A

e b X

Figure 2.9 The area of the region under the curve is
approximated by summing the areas of thin rectangles.

As the widths of the rectangles become smaller (approach zero), the sums of the areas of the rectangles approach the area
between the graph of f(x) and the x-axis over the interval [a, b]. Once again, we find ourselves taking a limit. Limits

of this type serve as a basis for the definition of the definite integral. Integral calculus is the study of integrals and their
applications.
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Example 2.3

Estimation Using Rectangles

Estimate the area between the x-axis and the graph of f(x) = x% +1 over the interval [0, 3] by using the three

rectangles shown in Figure 2.10.

fix) =x% + 1
Figure 2.10 The area of the region under the curve of

flx) = x% + 1 can be estimated using rectangles.

Solution

The areas of the three rectangles are 1 unit?, 2 unit?, and 5 unit’. Using these rectangles, our area estimate is 8
2
unit?,
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@ 2.3 Estimate the area between the x-axis and the graph of f(x) = x2+ 1 over the interval [0, 3] by using
the three rectangles shown here:
y

fx) = x* + 1

Other Aspects of Calculus

So far, we have studied functions of one variable only. Such functions can be represented visually using graphs in two
dimensions; however, there is no good reason to restrict our investigation to two dimensions. Suppose, for example, that
instead of determining the velocity of an object moving along a coordinate axis, we want to determine the velocity of a
rock fired from a catapult at a given time, or of an airplane moving in three dimensions. We might want to graph real-value
functions of two variables or determine volumes of solids of the type shown in Figure 2.11. These are only a few of the
types of questions that can be asked and answered using multivariable calculus. Informally, multivariable calculus can be
characterized as the study of the calculus of functions of two or more variables. However, before exploring these and other
ideas, we must first lay a foundation for the study of calculus in one variable by exploring the concept of a limit.

z

z=1(xy)

X
Figure 2.11 We can use multivariable calculus to find the
volume between a surface defined by a function of two variables
and a plane.
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2.1 EXERCISES

For the following exercises, points P(1, 2) and Q(x, y)

are on the graph of the function f(x) = x> +1.

1. [T] Complete the following table with the appropriate
values: y-coordinate of Q, the point Q(x, y), and the slope

of the secant line passing through points P and Q. Round
your answer to eight significant digits.

X y O(x, y) Mgec
1.1 a. e. L.
1.01 b. | £ .
1.001 ¢ | & k.
1.0001 d. h. L.

2. Use the values in the right column of the table in the
preceding exercise to guess the value of the slope of the line
tangent to fat x = 1.

3. Use the value in the preceding exercise to find the
equation of the tangent line at point P. Graph f(x) and the

tangent line.

For the following exercises, points P(1, 1) and Q(x, y)

are on the graph of the function f(x) = x3.

4. [T] Complete the following table with the appropriate
values: y-coordinate of Q, the point Q(x, y), and the slope

of the secant line passing through points P and Q. Round
your answer to eight significant digits.

X y O(x, y) Mgec
1.1 a. e. i
1.01 b. f. j
1.001 C. g. k.
1.0001 d. h. L

Chapter 2 | Limits

5. Use the values in the right column of the table in the
preceding exercise to guess the value of the slope of the
tangent line to fat x = 1.

6. Use the value in the preceding exercise to find the
equation of the tangent line at point P. Graph f(x) and the

tangent line.

For the following exercises, points P(4, 2) and Q(x, y)
are on the graph of the function f(x) = vx.

7. [T] Complete the following table with the appropriate
values: y-coordinate of Q, the point Q(x, y), and the slope

of the secant line passing through points P and Q. Round
your answer to eight significant digits.

X y O(x, y) Mgec
4.1 a. e. i
401 b | f i.
4.001 c. g. k.
4.0001 d. h. L

8. Use the values in the right column of the table in the
preceding exercise to guess the value of the slope of the
tangent line to fat x = 4.

9. Use the value in the preceding exercise to find the
equation of the tangent line at point P.

For the following exercises, points P(1.5, 0) and Q(¢, y)
are on the graph of the function f(¢) = cos(z¢).

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



Chapter 2 | Limits

10. [T] Complete the following table with the appropriate
values: y-coordinate of Q, the point Q(g, y), and the

slope of the secant line passing through points P and Q.
Round your answer to eight significant digits.

X y Q(‘ﬁ’ .Y) Mgec
1.4 a. e. L.
1.49 b. f. j-
1.499 c. g. k.
1.4999 d. h. L

11. Use the values in the right column of the table in the
preceding exercise to guess the value of the slope of the
tangent line to fat ¢ = 1.5.

12. Use the value in the preceding exercise to find the
equation of the tangent line at point P.

For the following exercises, points P(—1, —1) and

Q(x, y) are on the graph of the function f(x) = %

13. [T] Complete the following table with the appropriate
values: y-coordinate of Q, the point Q(x, y), and the slope

of the secant line passing through points P and Q. Round
your answer to eight significant digits.

X y O(x, y) Mgec
-1.05 a. e. 1.
-1.01 b. | £ i
-1.005 | ¢ | g k.
-1.001 d. h. L

14. Use the values in the right column of the table in the
preceding exercise to guess the value of the slope of the line
tangent to fat x = —1.

15. Use the value in the preceding exercise to find the
equation of the tangent line at point P.

For the following exercises, the position function of a ball
dropped from the top of a 200-meter tall building is given

133

by s(r) =200 — 4.9t2, where position s is measured in

meters and time t is measured in seconds. Round your
answer to eight significant digits.

16. [T] Compute the average velocity of the ball over the
given time intervals.

a. [4.99, 5]
b. [5,5.01]
c. [4.999, 5]
d. [5,5.001]

17. Use the preceding exercise to guess the instantaneous
velocity of the ball at r =5 sec.

For the following exercises, consider a stone tossed into the
air from ground level with an initial velocity of 15 m/sec.

Its height in meters at time t seconds is h(f) = 15¢ — 4.9¢2,

18. [T] Compute the average velocity of the stone over the
given time intervals.

a. [1, 1.05]
b. [1, 1.01]
c. [1, 1.005]
d. [1, 1.001]

19. Use the preceding exercise to guess the instantaneous
velocity of the stone at t =1 sec.

For the following exercises, consider a rocket shot into the
air that then returns to Earth. The height of the rocket in

meters is given by h(f) = 600 + 78.4¢ — 4.9¢%, where tis

measured in seconds.

20. [T] Compute the average velocity of the rocket over
the given time intervals.

a. [9,9.01]
b. [8.99, 9]
c. [9,9.001]
d. [8.999, 9]

21. Use the preceding exercise to guess the instantaneous
velocity of the rocket at # =9 sec.

For the following exercises, consider an athlete running
a 40-m dash. The position of the athlete is given by

3
d(t) = % + 4¢, where d is the position in meters and t is

the time elapsed, measured in seconds.
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22. [T] Compute the average velocity of the runner over
the given time intervals.
a. [1.95, 2.05]

b. [1.995, 2.005]
c. [1.9995, 2.0005]
d. [2,2.00001]

23. Use the preceding exercise to guess the instantaneous
velocity of the runner at # = 2 sec.

For the following exercises, consider the function

JFo) = Ixl.

24. Sketch the graph of f over the interval [—1, 2] and

shade the region above the x-axis.

25. Use the preceding exercise to find the aproximate
value of the area between the x-axis and the graph of f over
the interval [—1, 2] using rectangles. For the rectangles,

use the square units, and approximate both above and
below the lines. Use geometry to find the exact answer.
For the following exercises, consider the function
fx)=V1- x%. (Hint: This is the upper half of a circle of
radius 1 positioned at (0, 0).)

26. Sketch the graph of f over the interval [—1, 1].

27. Use the preceding exercise to find the aproximate area
between the x-axis and the graph of f over the interval
[—1, 1] using rectangles. For the rectangles, use squares

0.4 by 0.4 units, and approximate both above and below the
lines. Use geometry to find the exact answer.

For the following exercises, consider the function
fx)=—x2+1.

28. Sketch the graph of f over the interval [—1, 1].

29. Approximate the area of the region between the x-axis
and the graph of f over the interval [—1, 1].
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2.2 | The Limit of a Function

Learning Objectives

2.2.1 Using correct notation, describe the limit of a function.

2.2.2 Use a table of values to estimate the limit of a function or to identify when the limit does not
exist.

2.2.3 Use a graph to estimate the limit of a function or to identify when the limit does not exist.
2.2.4 Define one-sided limits and provide examples.

2.2.5 Explain the relationship between one-sided and two-sided limits.

2.2.6 Using correct notation, describe an infinite limit.

2.2.7 Define a vertical asymptote.

The concept of a limit or limiting process, essential to the understanding of calculus, has been around for thousands of years.
In fact, early mathematicians used a limiting process to obtain better and better approximations of areas of circles. Yet, the
formal definition of a limit—as we know and understand it today—did not appear until the late 19th century. We therefore
begin our quest to understand limits, as our mathematical ancestors did, by using an intuitive approach. At the end of this
chapter, armed with a conceptual understanding of limits, we examine the formal definition of a limit.

We begin our exploration of limits by taking a look at the graphs of the functions

_x’—4 _ k=2 __ 1
f(X)_)gC—Q,’ g(x)_ x_27 andh(x)_m,

which are shown in Figure 2.12. In particular, let’s focus our attention on the behavior of each graph at and around x = 2.

i v v

v/v t t + + 'X + t + + 1 + xx t 1 ¥ t 1 + .x
4 ‘o) o+

) == o) = 27 h) =
@ (®) ©

Figure 2.12 These graphs show the behavior of three different functions around x = 2.

Each of the three functions is undefined at x =2, but if we make this statement and no other, we give a very incomplete
picture of how each function behaves in the vicinity of x = 2. To express the behavior of each graph in the vicinity of 2
more completely, we need to introduce the concept of a limit.

Intuitive Definition of a Limit

Let’s first take a closer look at how the function f(x) = (x2 — 4)/(x — 2) behaves around x = 2 in Figure 2.12. As the
values of x approach 2 from either side of 2, the values of y = f(x) approach 4. Mathematically, we say that the limit of

f(x) as x approaches 2 is 4. Symbolically, we express this limit as
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lim f(x) = 4.

From this very brief informal look at one limit, let’s start to develop an intuitive definition of the limit. We can think of the
limit of a function at a number a as being the one real number L that the functional values approach as the x-values approach
a, provided such a real number L exists. Stated more carefully, we have the following definition:

Definition

Let f(x) be a function defined at all values in an open interval containing a, with the possible exception of a itself,
and let L be a real number. If all values of the function f(x) approach the real number L as the values of x( # a)
approach the number a, then we say that the limit of f(x) as x approaches a is L. (More succinct, as x gets closer to a,

f(x) gets closer and stays close to L.) Symbolically, we express this idea as

Jim f(x) = L. (2.3)

We can estimate limits by constructing tables of functional values and by looking at their graphs. This process is described
in the following Problem-Solving Strategy.

Problem-Solving Strategy: Evaluating a Limit Using a Table of Functional Values

1. To evaluate xli_r)na f(x), we begin by completing a table of functional values. We should choose two sets of

x-values—one set of values approaching a and less than a, and another set of values approaching a and greater
than a. Table 2.1 demonstrates what your tables might look like.

X Sx) X Sfx)

a-0.1 fla—-0.1) a+0.1 fl@+0.1)
a-0.01 f(a—0.01) a+0.01 fla+0.01)
a—0.001 f(a—0.001) a+0.001 fla+0.001)

a —0.0001 f(a—0.0001) a +0.0001 f(a+0.0001)
Use additional values as necessary. Use additional values as necessary.

Table 2.1 Table of Functional Values for xli—I»naf(x)

2. Next, let’s look at the values in each of the f(x) columns and determine whether the values seem to

be approaching a single value as we move down each column. In our columns, we look at the sequence
fla—0.1), f(a—0.01), f(a—0.001)., f(a —0.0001), and o} on, and

fla+0.1), f(a+0.01), f(a+0.001), f(a+ 0.0001), and so on. (Note: Although we have chosen the
x-values a + 0.1, a +0.01, a + 0.001, a + 0.0001, and so forth, and these values will probably work nearly

every time, on very rare occasions we may need to modify our choices.)
3. 1If both columns approach a common y-value L, we state JCli_r)na f(x) = L. We can use the following strategy to

confirm the result obtained from the table or as an alternative method for estimating a limit.
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4. Using a graphing calculator or computer software that allows us graph functions, we can plot the function
f(x), making sure the functional values of f(x) for x-values near a are in our window. We can use the trace

feature to move along the graph of the function and watch the y-value readout as the x-values approach a. If
the y-values approach L as our x-values approach a from both directions, then xli_r)na f(x) = L. We may need

to zoom in on our graph and repeat this process several times.

We apply this Problem-Solving Strategy to compute a limit in Example 2.4.

Example 2.4

Evaluating a Limit Using a Table of Functional Values 1

SILX ysing a table of functional values.

Evaluate lim
x—-0

Solution

We have calculated the values of f(x) = (sinx)/x for the values of x listed in Table 2.2.

X sinx X sinx
-0.1 0.998334166468 0.1 0.998334166468
-0.01 0.999983333417 0.01 0.999983333417
-0.001 0.999999833333 0.001 0.999999833333
-0.0001 0.999999998333 0.0001 0.999999998333
Table 2.2
Table of Functional Values for lim SIX
x—=0

Note: The values in this table were obtained using a calculator and using all the places given in the calculator
output.

(sinx)
X

As we read down each column, we see that the values in each column appear to be approaching one.

Thus, it is fairly reasonable to conclude that limo% = 1. A calculator or computer-generated graph of
X —

flx) = (Slxﬂ would be similar to that shown in Figure 2.13, and it confirms our estimate.
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0.6+
0.4+

0.2+

,\y 2 0 T \4\-/5x
-0.24

—0.44

Figure 2.13 The graph of f(x) = (sinx)/x confirms the

estimate from Table 2.2,

Example 2.5

Evaluating a Limit Using a Table of Functional Values 2

Evaluate lim XX=2 using a table of functional values.
x—=4x—4
Solution
As before, we use a table—in this case, Table 2.3—to list the values of the function for the given values of x.
VX—=2 NE=2
X x—4 X x—4
3.9 0.251582341869 4.1 0.248456731317
3.99 0.25015644562 4.01 0.24984394501
3.999 0.250015627 4.001 0.249984377
3.9999 0.250001563 4.0001 0.249998438
3.99999 0.25000016 4.00001 0.24999984
Table 2.3
Table of Functional Values for lim XX=2
x—=4x—4

After inspecting this table, we see that the functional values less than 4 appear to be decreasing toward
0.25 whereas the functional values greater than 4 appear to be increasing toward 0.25. We conclude that
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X —

42 = (0.25. We confirm this estimate using the graph of f(x) = VX =2

x—4

lim
x—4X—

shown in Figure 2.14.

oo 2 4 &  8X
. _Vx =2 X
Figure 2.14 The graph of f(x) = p— confirms the

estimate from Table 2.3.

2.4 1_q
@ Estimate lim1 ;‘C 1 using a table of functional values. Use a graph to confirm your estimate.
X — -

At this point, we see from Example 2.4 and Example 2.5 that it may be just as easy, if not easier, to estimate a limit of
a function by inspecting its graph as it is to estimate the limit by using a table of functional values. In Example 2.6, we
evaluate a limit exclusively by looking at a graph rather than by using a table of functional values.
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Example 2.6

Evaluating a Limit Using a Graph

For g(x) shown in Figure 2.15, evaluate lim . g(x).
X - -

y

g(x)

Figure 2.15 The graph of g(x) includes one value not on a

smooth curve.

Solution
Despite the fact that g(—1) =4, as the x-values approach —1 from either side, the g(x) values approach 3.

Therefore, lim . g(x) = 3. Note that we can determine this limit without even knowing the algebraic expression
x— —

of the function.

Based on Example 2.6, we make the following observation: It is possible for the limit of a function to exist at a point, and
for the function to be defined at this point, but the limit of the function and the value of the function at the point may be
different.
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@ 2.5 Use the graph of A(x) in Figure 2.16 to evaluate limzh(x), if possible.
X —

y

Figure 2.16

Looking at a table of functional values or looking at the graph of a function provides us with useful insight into the value
of the limit of a function at a given point. However, these techniques rely too much on guesswork. We eventually need to
develop alternative methods of evaluating limits. These new methods are more algebraic in nature and we explore them in
the next section; however, at this point we introduce two special limits that are foundational to the techniques to come.

Theorem 2.1: Two Important Limits

Let a be a real number and c be a constant.
i. limx=a (2.4)
X—da

il xh_l}nﬂc = (2.5)

We can make the following observations about these two limits.

i. For the first limit, observe that as x approaches a, so does f(x), because f(x) = x. Consequently, xli_r)nax =a.

For the second limit, consider Table 2.4.

X fx)=c X fx)=c¢
a—0.1 c a+0.1 c
a—0.01 c a+0.01 c
a—0.001 c a+0.001 c
a —0.0001 c a +0.0001 c

Table 2.4 Table of Functional Values for xli_r)nac =c
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Observe that for all values of x (regardless of whether they are approaching a), the values f(x) remain constant at c. We

have no choice but to conclude xli_r)nac =c.

The Existence of a Limit

As we consider the limit in the next example, keep in mind that for the limit of a function to exist at a point, the functional
values must approach a single real-number value at that point. If the functional values do not approach a single value, then
the limit does not exist.

Example 2.7

Evaluating a Limit That Fails to Exist

Evaluate limosin(l/x) using a table of values.
X —

Solution

Table 2.5 lists values for the function sin(1/x) for the given values of x.

X sin(%) X Si“(%)
-0.1 0.544021110889 0.1 —0.544021110889
-0.01 0.50636564111 0.01 —0.50636564111
—0.001 —0.8268795405312 0.001 0.826879540532
—0.0001 0.305614388888 0.0001 —0.305614388888
—-0.00001 —0.035748797987 0.00001 0.035748797987
—0.000001 0.349993504187 0.000001 —0.349993504187
Table 2.5
Table of Functional Values for xh—r}losm (%)

After examining the table of functional values, we can see that the y-values do not seem to approach any one
single value. It appears the limit does not exist. Before drawing this conclusion, let’s take a more systematic
approach. Take the following sequence of x-values approaching 0:

2 2 2 2 2 2

The corresponding y-values are
1,-1,1,-1,1, —1,....

At this point we can indeed conclude that limosin(llx) does not exist. (Mathematicians frequently abbreviate
X —
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“does not exist” as DNE. Thus, we would write limosin(l/x) DNE.) The graph of f(x) = sin(1/x) is shown
X —

in Figure 2.17 and it gives a clearer picture of the behavior of sin(1/x) as x approaches 0. You can see that

sin(1/x) oscillates ever more wildly between —1 and 1 as x approaches 0.

y

02 [ oa X

Figure 2.17 The graph of f(x) = sin(1/x) oscillates rapidly

between —1 and 1 as x approaches 0.

-4
x—2

2.6
@ Use a table of functional values to evaluate lim2 , if possible.
x -

One-Sided Limits

Sometimes indicating that the limit of a function fails to exist at a point does not provide us with enough information
about the behavior of the function at that particular point. To see this, we now revisit the function g(x) =[x — 2I/(x — 2)

introduced at the beginning of the section (see Figure 2.12(b)). As we pick values of x close to 2, g(x) does not approach

a single value, so the limit as x approaches 2 does not exist—that is, ling(x) DNE. However, this statement alone does
X —

not give us a complete picture of the behavior of the function around the x-value 2. To provide a more accurate description,

we introduce the idea of a one-sided limit. For all values to the left of 2 (or the negative side of 2), g(x) = —1. Thus, as x

approaches 2 from the left, g(x) approaches —1. Mathematically, we say that the limit as x approaches 2 from the left is —1.

Symbolically, we express this idea as

lim_g(x) = —1.
x—-2

Similarly, as x approaches 2 from the right (or from the positive side), g(x) approaches 1. Symbolically, we express this

idea as

lim+ gx) = 1.

x—2

We can now present an informal definition of one-sided limits.

Definition

We define two types of one-sided limits.
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Limit from the left: Let f(x) be a function defined at all values in an open interval of the form (c, a), and let L be a real
number. If the values of the function f(x) approach the real number L as the values of x (where x < @) approach the

number a, then we say that L is the limit of f(x) as x approaches a from the left. Symbolically, we express this idea as

lim_ f(x) = L. (2.6)

Limit from the right: Let f(x) be a function defined at all values in an open interval of the form (a, c), and let L be a
real number. If the values of the function f(x) approach the real number L as the values of x (where x > a) approach
the number a, then we say that L is the limit of f(x) as x approaches a from the right. Symbolically, we express this
idea as

1im+ fx)=L. (2.7)

X—a

Example 2.8

Evaluating One-Sided Limits

. x+1 ifx<2
For the function f(x) =

5 . , evaluate each of the following limits.
x“—=4 ifx>2

a X 1—1}51_ f(X)

b. lim f(x)
x—>2+
Solution

We can use tables of functional values again Table 2.6. Observe that for values of x less than 2, we use
f(x) =x+ 1 and for values of x greater than 2, we use f(x) = 2 —4.

X JO =x+1 x f@) =x—4
19 2.9 2.1 0.41
1.99 2.99 2.01 0.0401
1.999 2.999 2.001 0.004001
1.9999 2.9999 2.0001 0.00040001
1.99999 2.99999 2.00001 0.0000400001
Table 2.6
Table of Functional Values for f(x) = {x;_ ! if,x <2
x“—4ifx>2
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Based on this table, we can conclude that a. lil’Izl_ f(x) =3 andb. lim+ f(x) = 0. Therefore, the (two-sided)
X —

x—>2
limit of f(x) does not exist at x = 2. Figure 2.18 shows a graph of f(x) and reinforces our conclusion about

these limits.

. x+1lifx<?2
Figure 2.18 The graph of f(x) = as a

x> —4ifx>2
break at x = 2.

@ 2.7 Use a table of functional values to estimate the following limits, if possible.

ol
a lim_
x—2 X —
P-4
b lim

Let us now consider the relationship between the limit of a function at a point and the limits from the right and left at that
point. It seems clear that if the limit from the right and the limit from the left have a common value, then that common value
is the limit of the function at that point. Similarly, if the limit from the left and the limit from the right take on different
values, the limit of the function does not exist. These conclusions are summarized in Relating One-Sided and Two-
Sided Limits.

Theorem 2.2: Relating One-Sided and Two-Sided Limits

Let f(x) be a function defined at all values in an open interval containing a, with the possible exception of a itself,
and let L be a real number. Then,

lim f(x) = L.if and only if lim_ f(x) = Land lim f(x)= L.
L= xX—=a +

X—a
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Infinite Limits

Evaluating the limit of a function at a point or evaluating the limit of a function from the right and left at a point helps us to
characterize the behavior of a function around a given value. As we shall see, we can also describe the behavior of functions
that do not have finite limits.

We now turn our attention to h(x) = 1/(x — 2)2, the third and final function introduced at the beginning of this section

(see Figure 2.12(c)). From its graph we see that as the values of x approach 2, the values of A(x) = 1/(x — 2)2 become
larger and larger and, in fact, become infinite. Mathematically, we say that the limit of A(x) as x approaches 2 is positive
infinity. Symbolically, we express this idea as

lim_A(x) = +c0.
x—2

More generally, we define infinite limits as follows:

Definition

We define three types of infinite limits.

Infinite limits from the left: Let f(x) be a function defined at all values in an open interval of the form (b, a).

i. If the values of f(x) increase without bound as the values of x (where x < a) approach the number a, then
we say that the limit as x approaches a from the left is positive infinity and we write
lim_ f(x) = +o0. (2.8)
X —da

ii. If the values of f(x) decrease without bound as the values of x (where x < a) approach the number a, then
we say that the limit as x approaches a from the left is negative infinity and we write
lim_ f(x) = —oo0. (2.9)
X —da

Infinite limits from the right: Let f(x) be a function defined at all values in an open interval of the form (a, c).

i. If the values of f(x) increase without bound as the values of x (where x > @) approach the number a, then
we say that the limit as x approaches a from the right is positive infinity and we write
1im+ f(x) = +o0. (2.10)

X—=da
ii. If the values of f(x) decrease without bound as the values of x (where x > a) approach the number a, then

we say that the limit as x approaches a from the right is negative infinity and we write
lim+ f(x) = —oo0. (2.11)

X —=da
Two-sided infinite limit: Let f(x) be defined for all x # a in an open interval containing a.
i. If the values of f(x) increase without bound as the values of x (where x # @) approach the number a, then
we say that the limit as x approaches a is positive infinity and we write
xlgnaf(x) = +o00. (2.12)
ii. If the values of f(x) decrease without bound as the values of x (where x # a) approach the number a, then

we say that the limit as x approaches a is negative infinity and we write
xlgnaf(x) = —o0. (2.13)

It is important to understand that when we write statements such as x]i_l)lla f(x) =400 or xli_tpa f(x) = —oc0 we are

describing the behavior of the function, as we have just defined it. We are not asserting that a limit exists. For the
limit of a function f(x) to exist at a, it must approach a real number L as x approaches a. That said, if, for example,

xli_r}na f(x) = 400, we always write xli_r)na f(x) = 4+oco rather than Xlgna f(x) DNE.
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Example 2.9

Recognizing an Infinite Limit

Evaluate each of the following limits, if possible. Use a table of functional values and graph f(x) = 1/x to

confirm your conclusion.

-l
b fim, ¥
¢ xh—{no%
Solution
Begin by constructing a table of functional values.
x 1 x 1
-0.1 -10 0.1 10
-0.01 —-100 0.01 100
—-0.001 —1000 0.001 1000
—0.0001 —10,000 0.0001 10,000
—0.00001 —-100,000 0.00001 100,000
—0.000001 -1,000,000 0.000001 1,000,000

Table 2.7
Table of Functional Values for f(x) = L

a. The values of 1/x decrease without bound as x approaches 0 from the left. We conclude that
lim_1 = —c0.

b. The values of 1/x increase without bound as x approaches 0 from the right. We conclude that

c. Since lin&_% =—o00 and lim % = 400 have different values, we conclude that
X — X = O
lim 1 DNE.
x = 0%

The graph of f(x) = 1/x in Figure 2.19 confirms these conclusions.




148

Chapter 2 | Limits

Figure 2.19 The graph of f(x) = 1/x confirms that the limit
as x approaches 0 does not exist.

2.8 Evaluate each of the following limits, if possible. Use a table of functional values and graph f(x) = 1/x>
to confirm your conclusion.

b.

It is useful to point out that functions of the form f(x) = 1/(x — a)", where n is a positive integer, have infinite limits as x

approaches a from either the left or right (Figure 2.20). These limits are summarized in Infinite Limits from Positive

Integers.
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y y
i i
] ;a X ?a X
f(x) = TRy E f(x) = e E
if nis an odd ' if nis an even |
positive integer ' positive integer |
i i

Figure 2.20 The function f(x) = 1/(x — a)” has infinite limits at a.

Theorem 2.3: Infinite Limits from Positive Integers

If n is a positive even integer, then

A gy = e

If n is a positive odd integer, then

lim —L =
X —1>n(;+ x—a)" oo
and

: 1
lim —L - _
x—lgzl_(x—a)"

We should also point out that in the graphs of f(x) = 1/(x — a)", points on the graph having x-coordinates very near to a
are very close to the vertical line x = a. That is, as x approaches a, the points on the graph of f(x) are closer to the line

x = a. The line x = a is called a vertical asymptote of the graph. We formally define a vertical asymptote as follows:

Definition

Let f(x) be a function. If any of the following conditions hold, then the line x = a is a vertical asymptote of f(x).

lim_ f(x) = +4oo0or—oo
X—=>a
lim f(x) = +oo0or—oco
X—>a+

or
xh_Ipaf(x) = +o000r—o

Example 2.10
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Finding a Vertical Asymptote

Evaluate each of the following limits using Infinite Limits from Positive Integers. Identify any vertical
asymptotes of the function f(x) = 1/(x + 3)4.

a. im _ 44
x—=-3"(x+3)
b lim —1—
x—- -3t (x+3)
¢ tim —1
x = =3(x+ 3)
Solution

We can use Infinite Limits from Positive Integers directly.
1

a. im_———=+00
x> =37 (x4 3)

b lim, —l— =+
x—>—3+(x+3)

C. 1

lim — =
X = —3(x+3)

The function f(x) = 1/(x + 3)4 has a vertical asymptote of x = —3.

1

@ 2.9 Evaluate each of the following limits. Identify any vertical asymptotes of the function f(x) = W
X =

a. im_—3
x—2 (x_2)

b, lim —L—
x—>2+(x—2)

c. lim—L—
x—>2(x_2)

In the next example we put our knowledge of various types of limits to use to analyze the behavior of a function at several
different points.

Example 2.11

Behavior of a Function at Different Points

Use the graph of f(x) in Figure 2.21 to determine each of the following values:

a lim_fCo; lim f(); lim f(x); f(=4)

x— —4
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b lim_ fGx) R _1)i1112+ f@); lim fx); f(=2)

c.  lim_f(x); lim_f(x); lim f(x); f(1)
x—1 x—>1+ x—=1

d. . Ergl_ f0; ) lirgl+ S; x1§n3f(x); f3)

Figure 2.21 The graph shows f(x).

Solution
Using Infinite Limits from Positive Integers and the graph for reference, we arrive at the following values:
a. lim_f(x)=0; lim f(x)=0; lim f(x)=0; f(-4)=0
x— —4 + x— —4

x— —4

b. lim_ f(x)=3.; lim f(x)=3; lim_f(x)=3; f(-2) is undefined
x— =2 + x—= =2

x— =2

. lim_f@)=6 lim f()=3; lim f(x) DNE; f(1)=6

X —

d. lim_ f(x) = —o0; lim f(x) = —o0; lim_f(x) = —oo; f(3) is undefined
x—3 x— 3t x—3

@ 2.10 Evaluate lim1 f(x) for f(x) shown here:
X —

yi
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Example 2.12

Chapter Opener: Einstein’s Equation

Figure 2.22 (credit: NASA)

In the chapter opener we mentioned briefly how Albert Einstein showed that a limit exists to how fast any object
can travel. Given Einstein’s equation for the mass of a moving object, what is the value of this bound?

Solution

Our starting point is Einstein’s equation for the mass of a moving object,
Mo

where m, is the object’s mass at rest, v is its speed, and c is the speed of light. To see how the mass changes at

high speeds, we can graph the ratio of masses m/m, as a function of the ratio of speeds, v/c (Figure 2.23).

0l 02 04 06 08 1.0%

v/ec
Figure 2.23 This graph shows the ratio of masses as a
function of the ratio of speeds in Einstein’s equation for the
mass of a moving object.

We can see that as the ratio of speeds approaches 1—that is, as the speed of the object approaches the speed
of light—the ratio of masses increases without bound. In other words, the function has a vertical asymptote at
v/c = 1. We can try a few values of this ratio to test this idea.
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c
0.99 0.1411 7.089
0.999 0.0447 22.37
0.9999 0.0141 70.71
Table 2.8

Ratio of Masses and Speeds for a
Moving Object

153

Thus, according to Table 2.8, if an object with mass 100 kg is traveling at 0.9999c, its mass becomes 7071 kg.
Since no object can have an infinite mass, we conclude that no object can travel at or more than the speed of light.
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2.2 EXERCISES

For the following exercises, consider the function

2
—x—1
foo ==L

30. [T] Complete the following table for the function.
Round your solutions to four decimal places.

X fx) x fx)
0.9 a. 1.1 e.
0.99 b. 1.01 f.
0.999 C. 1.001 g.
0.9999 d. 1.0001 h.

31. What do your results in the preceding exercise indicate
about the two-sided limit 1im1 f(x)? Explain your
X —

response.

For the following exercises, consider the function
f)=1+x0"

32. [T] Make a table showing the values of f for
x =-0.01, —0.001, —0.0001, —0.00001 and for

x =0.01, 0.001, 0.0001, 0.00001. Round your solutions

to five decimal places.

table to evaluate the limits. Round your solutions to eight
decimal places.

Chapter 2 | Limits

35. [T] lim S8 40,1, +0.01, +0.001, +.0001
X —

x sin2x x | sinx
-0.1 a. 0.1 e.
-0.01 b. 0.01 f.
-0.001 c. 0.001 g.
-0.0001 d. 0.0001 h.

36. [T] lim SI03X +0.1, 20,01, £0.001, +0.0001
X —

X % X %
-0.1 a. 0.1 e.
—-0.01 b. 0.01 f.
-0.001 c. 0.001 g.
-0.0001 d. 0.0001 h.

x fx) X f&x)
-0.01 a. 0.01 e.
-0.001 b. 0.001 f.
—-0.0001 C. 0.0001 g.
—0.00001 d. 0.00001 h.

33. What does the table of values in the preceding exercise
indicate about the function f(x) = (1 + x) xg

34. To which mathematical constant does the limit in the
preceding exercise appear to be getting closer?

In the following exercises, use the given values to set up a

37. Use the preceding two exercises to conjecture (guess)

the value of the following limit: lim SI0&X for g, a
x—0

positive real value.

[T] In the following exercises, set up a table of values to
find the indicated limit. Round to eight digits.
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z—1

2 .
38, lim —X-—=4 41. lim =*——
xl—1>n2x2+x_6 2=072(z43)
2 2 z—1 z—1
x“—4 x“—4 —<—2
—_ V4 V4
X X 4+x—6 X X +x—6 22z +3) 22z +3)
1.9 a. 2.1 e. -0.1 a. 0.1 e.
1.99 b. 2.01 f. -0.01 b. 0.01 f.
1.999 C. 2.001 g. -0.001 C. 0.001 g.
1.9999 d. 2.0001 h. -0.0001 d. 0.0001 h.
39. lim (1 —2x) 42. lim <ost
x>l rmot !
X 1- 2x X 1- 2x CcOSt
t {
0.9 a. 1.1 e.
0.1 a.
0.99 b. 1.01 f.
0.01 b.
0.999 C. 1.001 g.
0.001 C.
0.9999 d. 1.0001 h.
0.0001 d.
40 Xh—I’nOl — el o 1-2
43. lim 5 2
5 5 ¥o2x" -4
X 1—el X 1—el* 1_2 1_2
X
X - X
x2—4 x2—4
-0.1 a. 0.1 e
1.9 a. 2.1 e.
-0.01 b. 0.01 f.
1.99 b. 2.01 f.
-0.001 c. 0.001 g.
1.999 C. 2.001 g.
-0.0001 d. 0.0001 h.
1.9999 d. 2.0001 h.

[T] In the following exercises, set up a table of values
and round to eight significant digits. Based on the table of
values, make a guess about what the limit is. Then, use a
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calculator to graph the function and determine the limit.
Was the conjecture correct? If not, why does the method of
tables fail?

44. lim sin (E)
0—-0

> [
0 sn(g) || e | snl3)
-0.1 a. 0.1 e.
-0.01 b. 0.01 f.
-0.001 c. 0.001 g.
—0.0001 d. 0.0001 h.

45, 1im+ Leog (1)

oot @ a
a | deosld)
0.1 a.
0.01 b.
0.001 c.
0.0001 d.

In the following exercises, consider the graph of the
function y = f(x) shown here. Which of the statements

about y = f(x) are true and which are false? Explain why

a statement is false.

Chapter 2 | Limits

46, lim f(x) =0

47 lim_f()=3

X — —2
48. lim f(x) = f(-8)
x— -8
49. lim f(x) =S5
x—=6
In the following exercises, use the following graph of the

function y = f(x) to find the values, if possible. Estimate

when necessary.

o<
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50.  lim_ f(x)
x—1

51 lim_f(x)

x—1
52. lim1 fx)
53. Xlgnzf(x)
54. f(1)

In the following exercises, use the graph of the function
y = f(x) shown here to find the values, if possible.

Estimate when necessary.

55 lim_ f(x)
x—0

56 lim_f(x)

x—=0
57.  lim f(x)
x—0
58. lim f(x)
x— 2
In the following exercises, use the graph of the function

y = f(x) shown here to find the values, if possible.

Estimate when necessary.

59.

60.

61.

62.

63.

64.

157

o'

Jimy 1

lim _f(x)

x— =2
RANE
Ll 109

lim+ fx)

x—2

im0

In the following exercises, use the graph of the function
y = g(x) shown here to find the values, if possible.

Estimate when necessary.

65.

oS

i
Jim_ gx)




158 Chapter 2 | Limits

66. lim g(x) 71.  lim_ f(x)
x—ot x—0

67. i 72, lim_ f(x)
X 1—I>n0g(X) x— 0T

In the following exercises, use the graph of the function 73.  lim f(x)
y = h(x) shown here to find the values, if possible. x=0

Estimate when necessary. 74.  lim f(x)
x—1
y
75.  lim_f(x)
4+ x—2
31 In the following exercises, sketch the graph of a function
ol with the given properties.
11 76.
lim f(x)=1, lim_f(x)=3, lim f(x)=26, f(4) is
+ x—=2 x—4 x— 4t
-4 -3 -2 -1 1 2 3 4 X

not defined.
77. B _1)in_1 00f()c) =0, x_lerl—f(x) = —00,

lim  f(x) = oo, lim f(x) = f(0), f(0) =1, lim f(x)=—co

X' = 0o
x— -1

78. dim f) =2, lim_ f() = —eo,
68. Eng_ h(x) ) 1in31+ f@) =0, lim f(x)=2, f(0) = _Tl
69. lim h . .
R 79. Ldim [0 =2, lim_f() = —co,

70, lim h(x) Jim f(x0) =2, f(0)=0

In the following exercises, use the graph of the function 80.hm f) =0, lim_f(x)=oc0, lim f(x)=—oo,
y = f(x) shown here to find the values, if possible. re oo x—= -1 x— 17
Estimate when necessary. f0) =-1, . 1_1)II11_ fx) = —0o0, i 1_1>H11+ f(x) = o0, lemw fx)=0
1
44
3t
2l
14
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81. Shock waves arise in many physical applications,
ranging from supernovas to detonation waves. A graph of
the density of a shock wave with respect to distance, x, is
shown here. We are mainly interested in the location of the
front of the shock, labeled xgg in the diagram.

p
1
P2
Xse X
a. Evaluate lim p(x).
X = _XSF
b. Evaluate lim _ p(x).
X=X SF

c. Evaluate xl}r}ls Fp(x). Explain the physical
meanings behind your answers.

82. A track coach uses a camera with a fast shutter to
estimate the position of a runner with respect to time. A
table of the values of position of the athlete versus time is
given here, where x is the position in meters of the runner
and t is time in seconds. What is tli_r)nzx(t) ? What does it

mean physically?

t (sec) x (m)
1.75 4.5
1.95 6.1
1.99 6.42
2.01 6.58
2.05 6.9
2.25 8.5

159
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2.3 | The Limit Laws

Learning Objectives

2.3.1 Recognize the basic limit laws.

2.3.2 Use the limit laws to evaluate the limit of a function.

2.3.3 Evaluate the limit of a function by factoring.

2.3.4 Use the limit laws to evaluate the limit of a polynomial or rational function.
2.3.5 Evaluate the limit of a function by factoring or by using conjugates.

2.3.6 Evaluate the limit of a function by using the squeeze theorem.

In the previous section, we evaluated limits by looking at graphs or by constructing a table of values. In this section, we
establish laws for calculating limits and learn how to apply these laws. In the Student Project at the end of this section, you
have the opportunity to apply these limit laws to derive the formula for the area of a circle by adapting a method devised by
the Greek mathematician Archimedes. We begin by restating two useful limit results from the previous section. These two
results, together with the limit laws, serve as a foundation for calculating many limits.

Evaluating Limits with the Limit Laws

The first two limit laws were stated in Two Important Limits and we repeat them here. These basic results, together with
the other limit laws, allow us to evaluate limits of many algebraic functions.

Theorem 2.4: Basic Limit Results

For any real number a and any constant c,
i. limx=a (2.14)
X—>a

ii. limc=c (2.15)
X—=a

Example 2.13

Evaluating a Basic Limit

Evaluate each of the following limits using Basic Limit Results.

a. limx
x—-2
b. lim5
x—-2
Solution

a. The limit of x as x approaches a is a: limzx =2.

X =

b. The limit of a constant is that constant: lim25 =3.
X —

We now take a look at the limit laws, the individual properties of limits. The proofs that these laws hold are omitted here.
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Theorem 2.5: Limit Laws

Let f(x) and g(x) be defined for all x # a over some open interval containing a. Assume that L and M are real

numbers such that xli_I)nﬂ f(x) =L and xli_r)nﬂg(x) = M. Let c be a constant. Then, each of the following statements

holds:
Sum law for limits: xli_r}na(}r )+ gx) = xli_r)na f(x) + xli_r)nag(x) =L+M

Difference law for limits: xli—1>na(f x) — glx) = xli_r)na f(x) — xlgnag(x) =L-M
Constant multiple law for limits: xli_r)nac f(x)=c- xli_r)na f(x)=cL

Product law for limits: xli_I)na(f x)-gx) = xli_r)na f(x)- xli_r)nag(x) =L-M

. C fo  im e
Quotient law for limits: xll_lpﬂ—g o = —xli_l}lag =M for M # 0

n
Power law for limits: lim (f(x))" = (Xli_rpa f (x)) = L" for every positive integer n.

Root law for limits: xli_r)nan\/ fx) = "q/xli_rpa fx) = VL forall L if nis odd and for L > 0 if n is even and fx)>0.

We now practice applying these limit laws to evaluate a limit.

Example 2.14

Evaluating a Limit Using Limit Laws

Use the limit laws to evaluate lim 3(4x +2).
X = -

Solution

Let’s apply the limit laws one step at a time to be sure we understand how they work. We need to keep in mind

the requirement that, at each application of a limit law, the new limits must exist for the limit law to be applied.
lim (4x+2) = lim 4x+ lim 2 Apply the sum law.

x— =3 x— =3 x— =3

=4- lim x+ lim 32 Apply the constant multiple law.
x— —

x— -

=4-(-3)+2=-10. Apply the basic limit results and simplify.

Example 2.15

Using Limit Laws Repeatedly

2
Use the limit laws to evaluate lim M.
x=2 344

Solution
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To find this limit, we need to apply the limit laws several times. Again, we need to keep in mind that as we rewrite
the limit in terms of other limits, each new limit must exist for the limit law to be applied.

aogeg M -3 ])

x=2 x4 xlEnz(x3 +4)

Apply the quotient law, making sure that. @3+4#0

2. limx% -3 limx + lim 1
x—=2 X = x—=2

3 Apply the sum law and constant multiple law.
lim2x + lim24
X = X =

2

2+(Jimx) =3 lim v+ lim 1
= =2 = 2 xo Apply the power law.
(1timx) + tim4
-2 x—2
24) =32 +1 _ 1 A L o
== == = pply the basic limit laws and simplify.
@7 +4 4

@ 2.11  Use the limit laws to evaluate 1im6(2x — 1)Vx + 4. In each step, indicate the limit law applied.
X =

Limits of Polynomial and Rational Functions
By now you have probably noticed that, in each of the previous examples, it has been the case that xlgna f(x) = f(a). This

is not always true, but it does hold for all polynomials for any choice of a and for all rational functions at all values of a for
which the rational function is defined.

Theorem 2.6: Limits of Polynomial and Rational Functions

Let p(x) and g(x) be polynomial functions. Let a be a real number. Then,

lim p(x) = p(a)

X — a

xli_rpagg)g = % when g(a) # 0.

To see that this theorem holds, consider the polynomial p(x) = c,x" + ¢, _;x"~ !

+ - +c¢;x+c( By applying the
sum, constant multiple, and power laws, we end up with

1+ +Clx+C0)

n n—1
=c,,(xli_r)nax) +cn_1(xli_r)nax) + e +c1(xlm1ax)+xlgnac0
=cpa"+c,_1a" "'+ - Hecjateg

= p(a@).

. o n n—
Jim p(x) = xh_t}na(cnx +c,_1x

It now follows from the quotient law that if p(x) and g(x) are polynomials for which g(a) # 0, then

P _ pla)
05 = g

Example 2.16 applies this result.
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Example 2.16

Evaluating a Limit of a Rational Function

2
Evaluate the lim 2X-=3x+1
x—3 S5x+4

Solution

2
Since 3 is in the domain of the rational function f(x) = M, we can calculate the limit by substituting

S5x+4
3 for x into the function. Thus,

. 2x2—3x+1_m
S Y T 19

@ 212 Eyaluate lim (3x3 - 2x+7).
x— =2

Additional Limit Evaluation Techniques

As we have seen, we may evaluate easily the limits of polynomials and limits of some (but not all) rational functions by
direct substitution. However, as we saw in the introductory section on limits, it is certainly possible for xli_l)na f(x) to exist

when f(a) is undefined. The following observation allows us to evaluate many limits of this type:

If for all x # a, f(x) = g(x) over some open interval containing a, then xli_I)na fx) = xli_l)nag(x).

2
To understand this idea better, consider the limit liml); _11 .
X = -

The function

2
_xt—=1
Fx) —);T]
_(x=Dx+1
- x—1

and the function g(x) = x + 1 are identical for all values of x # 1. The graphs of these two functions are shown in Figure
2.24.
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© -1
gx¥)=x+1 fX) =51
Figure 2.24 The graphs of f(x) and g(x) are identical for all x # 1. Their limits at 1 are equal.
We see that
2 —
lim £ =1 = jjy G=DO+D
x—->1X— 1 x—1 x—1
= lim (x+ 1)
x—=1
=2.
The limit has the form xlgna%, where xli_r)nﬂ f(x) =0 and Xlgnag(x) = 0. (In this case, we say that f(x)/g(x) has the

indeterminate form 0/0.) The following Problem-Solving Strategy provides a general outline for evaluating limits of this

type.

Problem-Solving Strategy: Calculating a Limit When f(x)/g(x) has the Indeterminate Form 0/0

1. First, we need to make sure that our function has the appropriate form and cannot be evaluated immediately
using the limit laws.

2. We then need to find a function that is equal to A(x) = f(x)/g(x) forall x # a over some interval containing
a. To do this, we may need to try one or more of the following steps:

a. If f(x) and g(x) are polynomials, we should factor each function and cancel out any common factors.

b. If the numerator or denominator contains a difference involving a square root, we should try

multiplying the numerator and denominator by the conjugate of the expression involving the square
root.

c. If f(x)/g(x) is a complex fraction, we begin by simplifying it.

3. Last, we apply the limit laws.

The next examples demonstrate the use of this Problem-Solving Strategy. Example 2.17 illustrates the factor-and-cancel
technique; Example 2.18 shows multiplying by a conjugate. In Example 2.19, we look at simplifying a complex fraction.
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Example 2.17

Evaluating a Limit by Factoring and Canceling

Evaluate hm x;&c
—-32x2 553
Solution
2
Step 1. The function f(x) = —X7=3X s undefined for x = 3. In fact, if we substitute 3 into the function

2x%—5x—3
we get 0/0, which is undefined. Factoring and canceling is a good strategy:

2
: x“=3x _ 3 x(x—=3)
R s L O T )

2
x“=3x _ _ x
Step 2. For all x # 3, 2 s. 3 4T Therefore,

x(x—3) o X
LU G rar s SN o &

Step 3. Evaluate using the limit laws:

Aim T =

\llu

2
@ 2.13 Evaluate lim x+24—x+3

x—=-3 x*-90

Example 2.18

Evaluating a Limit by Multiplying by a Conjugate

Evaluate lim M.
x>-1 x+1

Solution
Vx+2-1 _ A
Step 1. has the form 0/0 at —1. Let’s begin by multiplying by Vx+2+ 1, the conjugate of

Vx+ 2 — 1, on the numerator and denominator:

lim Nx+2-1_ lim Vx+2—1 Vx+2+1
x>-1 x+1 e T R

Step 2. We then multiply out the numerator. We don’t multiply out the denominator because we are hoping that
the (x + 1) in the denominator cancels out in the end:

lim #1
Ny DWVx+2+1)
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Step 3. Then we cancel:

= lim —L
= -IWx+2+1
Step 4. Last, we apply the limit laws:
1

: 1
lim ——— X
xo>-1Wx+241 2

@ 214 poaluate lim xX=1=2

x—>5 X—=95

Example 2.19

Evaluating a Limit by Simplifying a Complex Fraction

1 1

Evaluate lim 2+l 2
x—=1 x—1

Solution

1 _1

x+1 2
-1

2+ DR2(x+ 1) :

Step 1. has the form 0/0 at 1. We simplify the algebraic fraction by multiplying by

1 1 1 1
x+1_§= limx+1_§~2(x+1)
x—>1 x—1 x>1 x—1 2(x+ 1)

Step 2. Next, we multiply through the numerators. Do not multiply the denominators because we want to be able
to cancel the factor (x — 1):

— lim 2—-(x+1
= 12(x—Dx+1)

Step 3. Then, we simplify the numerator:

— L —x+1

= Im e+
Step 4. Now we factor out —1 from the numerator:

o —(x—1)

= Im e+

Step 5. Then, we cancel the common factors of (x — 1):

— 1 -1
= e
Step 6. Last, we evaluate using the limit laws:

. -1 _
Jim D

1
T
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@ 2.15 1 +1
Evaluate lim *tZ2
x—>-3 x+3

Example 2.20 does not fall neatly into any of the patterns established in the previous examples. However, with a little
creativity, we can still use these same techniques.

Example 2.20

Evaluating a Limit When the Limit Laws Do Not Apply

-1 5
Evaluate xh_r)no( 7t =3 o= 5)).

Solution
Both 1/x and 5/x(x —5) fail to have a limit at zero. Since neither of the two functions has a limit at zero, we

cannot apply the sum law for limits; we must use a different strategy. In this case, we find the limit by performing
addition and then applying one of our previous strategies. Observe that

1,5 _Xx=5+35
X x(x=95) x(x—=5)

__x
~ x(x—5)

Thus,
(1 5 1 X
xhi“o(x G- ) Jim G =)

. 1
xh—r>n0x -5

=

@ 2.16 Evaluate lim [—— — 4 )
x=3\X=3 2_92y_3

Let’s now revisit one-sided limits. Simple modifications in the limit laws allow us to apply them to one-sided limits. For

example, to apply the limit laws to a limit of the form lim_ &(x), we require the function /(x) to be defined over an
X—=a

open interval of the form (b, a); for a limit of the form lim h(x), we require the function /(x) to be defined over an
X —=a

open interval of the form (a, ¢). Example 2.21 illustrates this point.

Example 2.21

Evaluating a One-Sided Limit Using the Limit Laws

Evaluate each of the following limits, if possible.

a. lim_Vx—3
x—3
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b. lim Vx-3
x— 3t
Solution

Figure 2.25 illustrates the function f(x) = Vx — 3 and aids in our understanding of these limits.

y

+ + t + + + +
| X

Figure 2.25 The graph shows the function f(x) = Vx — 3.

a. The function f(x) = Vx — 3 is defined over the interval [3, +o0). Since this function is not defined to

the left of 3, we cannot apply the limit laws to compute lin31_ Vx — 3. In fact, since f(x) =Vx—3 is
X —

undefined to the left of 3, lin31_ Vx — 3 does not exist.
X —

b. Since f(x) =Vx —3 is defined to the right of 3, the limit laws do apply to lim+ Vx — 3. By applying

x—3

these limit laws we obtain lim Vx—3 =0.
x— 3t

In Example 2.22 we look at one-sided limits of a piecewise-defined function and use these limits to draw a conclusion
about a two-sided limit of the same function.

Example 2.22

Evaluating a Two-Sided Limit Using the Limit Laws

4x-3 ifx<?2
For f(x) = 5 . , evaluate each of the following limits:
x=3)"ifx>2
a. lim_ f(x)
x—>2
b. lim f(x)
X - 2+

e lim /()

Solution

Figure 2.26 illustrates the function f(x) and aids in our understanding of these limits.
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T f(x)

Figure 2.26 This graph shows a function f(x).

a. Since f(x) =4x—3 forall xin (—o0, 2), replace f(x) in the limit with 4x — 3 and apply the limit
laws:

lim_ f(x) = lim_(4x—-3)=>5.
x—2 x—2

b. Since f(x)=(x— 3)2 for all x in (2, +00), replace f(x) in the limit with (x — 3)2 and apply the
limit laws:
lim f()= lim (x-3)*=1.
x—2t x—2t

c. Since 1in21_ f(x) =5 and lim+ f(x) =1, we conclude that lim2 f(x) does not exist.
X = X —

x—2

@ 217 —x—-2ifx < -1
Graph f(x) = 2if x=—1  and evaluate liml_ f(x).
X = —

ifx> -1

We now turn our attention to evaluating a limit of the form lim AE)) where xli_lpa f(x) =K, where K#0 and

Mgy
xli_rpag(x) = 0. Thatis, f(x)/g(x) has the form K/0, K # 0 ata.

Example 2.23

Evaluating a Limit of the Form K/0, K # 0 Using the Limit Laws

Evaluate lim_ —X=3_
x=2" x4 - 2x

Solution
Step 1. After substituting in x = 2, we see that this limit has the form —1/0. That is, as x approaches 2 from the
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left, the numerator approaches —1; and the denominator approaches 0. Consequently, the magnitude of x(xx;—?’Z)

becomes infinite. To get a better idea of what the limit is, we need to factor the denominator:

: x—=3 _ x—3
LU e U S s ) ¥

Step 2. Since x — 2 is the only part of the denominator that is zero when 2 is substituted, we then separate
1/(x — 2) from the rest of the function:

- im Xx—=3 _1
_xl—1>H21_ X X—Z.

Step 3. linzl_ X = 3 - —% and lirr21 = —o0. Therefore, the product of (x — 3)/x and 1/(x — 2) has
X = -

a limit of +o0:

2.18  gyaluate lim L22
$=1(x— 1)

The Squeeze Theorem

The techniques we have developed thus far work very well for algebraic functions, but we are still unable to evaluate limits
of very basic trigonometric functions. The next theorem, called the squeeze theorem, proves very useful for establishing
basic trigonometric limits. This theorem allows us to calculate limits by “squeezing” a function, with a limit at a point a that
is unknown, between two functions having a common known limit at a. Figure 2.27 illustrates this idea.

y

Y

h(x)

Figure 2.27 The Squeeze Theorem applies when
f() < g < h(x) and Jim fx) = Jim h(2).
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Theorem 2.7: The Squeeze Theorem

Let f(x), g(x), and h(x) be defined for all x # a over an open interval containing a. If
S(x) < g(x) < h(x)
for all x # a in an open interval containing a and
xli—I>naf =L= xlgnah(x)

where L is a real number, then lim g(x) = L.
X —=a

Example 2.24

Applying the Squeeze Theorem

Apply the squeeze theorem to evaluate lim xcosx.
X —
Solution

Because —1 < cosx <1 forall x, we have — |x| < xcosx < |x|. Since limo( —x)=0= limleI, from the
X — X —

squeeze theorem, we obtain limoxcosx = 0. The graphs of f(x) = — ||, g(x) = xcosx, and h(x) = |x| are

X =

shown in Figure 2.28.

Figure 2.28 The graphs of f(x), g(x), and h(x) are shown

around the point x = 0.

@ 2.19  yse the squeeze theorem to evaluate lim0x2 sin%.
X =

We now use the squeeze theorem to tackle several very important limits. Although this discussion is somewhat lengthy,
these limits prove invaluable for the development of the material in both the next section and the next chapter. The first of
these limits is elimosin 6. Consider the unit circle shown in Figure 2.29. In the figure, we see that sin@ is the y-coordinate

—

on the unit circle and it corresponds to the line segment shown in blue. The radian measure of angle 0 is the length of the
arc it subtends on the unit circle. Therefore, we see that for 0 < 6 < %, 0 < sinf < 0.
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(cos#, sing)

sind

For0<0<§,0<sin0<0.

Figure 2.29 The sine function is shown as a line on the unit
circle.

Because lim 0=0 and lim 6 =0, by using the squeeze theorem we conclude that
0- 0t 0— 0t

lim sind = 0.
00t

To see that P lin(}_ sind = 0 as well, observe that for —% <0<0,0<-0< % and hence, 0 < sin(—6) < —6.

Consequently, 0 < —sinf < —@. It follows that O > sin@ > #. An application of the squeeze theorem produces the

desired limit. Thus, since lim sind =0 and lim_sind =0,
-0t 0-0

-

lim sinf = 0. (2.16)
-0

Next, using the identity cos@ = V1 — sin?@ for —% <f< %, we see that

Hlim cosf = limom =1. (2.17)

— —

We now take a look at a limit that plays an important role in later chapters—namely, ehmo%' To evaluate this limit,
—

we use the unit circle in Figure 2.30. Notice that this figure adds one additional triangle to Figure 2.30. We see that the
length of the side opposite angle 6 in this new triangle is tand. Thus, we see that for 0 < 8 < Z, sinf < 0 < tan#.
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\ tano

sing

1,0)%

For0 <6< % sind < 6 < tano.

Figure 2.30 The sine and tangent functions are shown as lines
on the unit circle.

By dividing by sin@ in all parts of the inequality, we obtain

0 . _1_
< sin@ < cos@’

Equivalently, we have

1 >%>cos€.

Since lim 1=1= lim cosf, we conclude that lim sinf _ g By applying a manipulation similar to that used
007t 00t oot 0
in demonstrating that lim_sind = 0, we can show that lim_ sinf _ 1. Thus,
-0 -0 0
60 6 '

In Example 2.25 we use this limit to establish 671im()% = 0. This limit also proves useful in later chapters.

-

Example 2.25

Evaluating an Important Trigonometric Limit

Evaluate lim 1_—0050.
-0 0

Solution

In the first step, we multiply by the conjugate so that we can use a trigonometric identity to convert the cosine in
the numerator to a sine:
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s 1—cos@ _ 13, 1 —cos@ 1+cosd
ah—IPO [ - ah—I>n0 [ 1 + cos@
— 1 1—cos?8
= JMAT + cos0)
)
T sin“ 6
N 611—I>n09(1 + cos6)
— T:m Sind . _ sin@
- 011—I>n0 6 14 cosé
_1.0_
=1 5 0.
Therefore,
lim L=<c0s@ _ ¢
050 6

@ 220 Eyaluate lim 1.=<08€
6>0 sinf
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¥ Student PROJECT

Deriving the Formula for the Area of a Circle

Some of the geometric formulas we take for granted today were first derived by methods that anticipate some of the
methods of calculus. The Greek mathematician Archimedes (ca. 287-212; BCE) was particularly inventive, using
polygons inscribed within circles to approximate the area of the circle as the number of sides of the polygon increased.
He never came up with the idea of a limit, but we can use this idea to see what his geometric constructions could have
predicted about the limit.

We can estimate the area of a circle by computing the area of an inscribed regular polygon. Think of the regular
polygon as being made up of n triangles. By taking the limit as the vertex angle of these triangles goes to zero, you can
obtain the area of the circle. To see this, carry out the following steps:

1. Express the height h and the base b of the isosceles triangle in Figure 2.31 in terms of 6 and r.

Circle

Figure 2.31

2. Using the expressions that you obtained in step 1, express the area of the isosceles triangle in terms of 6 and r.
(Substitute (1/2)sin@ for sin(@/2)cos(f/2) in your expression.)
3. 1If an n-sided regular polygon is inscribed in a circle of radius r, find a relationship between 6 and n. Solve this
for n. Keep in mind there are 27 radians in a circle. (Use radians, not degrees.)
Find an expression for the area of the n-sided polygon in terms of r and 6.
To find a formula for the area of the circle, find the limit of the expression in step 4 as 0 goes to zero. (Hint:
. (sinf) _

g = b

The technique of estimating areas of regions by using polygons is revisited in Introduction to Integration.
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2.3 EXERCISES

In the following exercises, use the limit laws to evaluate
each limit. Justify each step by indicating the appropriate
limit law(s).

83. lim (4x? — 2x +3)
x—=0

3 2
84. lim X +3x"+35

x—1 4 —Tx
85. lim 2vx2—6x+3
X — —

86. lim (9x + 1)2
x— -1

In the following exercises, use direct substitution to
evaluate each limit.

87. lim x?2

x—17

88. lim (4x?-1)

X = -

89. lim —L—
x— 01+ sinx

2
90. lim X ~*

X —

91. lim 2=1x
x—>1X+6

92.  lim Ine>*

X =

In the following exercises, use direct substitution to show
that each limit leads to the indeterminate form 0/0. Then,

evaluate the limit.

93. lim £-=16

94, lim X=2

95. lim 2x=18

x—>62x—12
o6 lim LFM* -1
T h->0 h

s t=9
97. tll—r>n9\ﬁ—3

Chapter 2 | Limits

1 _1
98. hlimo%, where a is a non-zero real-valued
—
constant
99. lim Sin@
6 — ntan@

3
100.  lim =1
x—)lx —1

2
101.  lim 2x"+3x—=2

x—=>12 2x-1
102,  lim x+t4-1
x—>-3 x+3

In the following exercises, use direct substitution to obtain
an undefined expression. Then, use the method of
Example 2.23 to simplify the function to help determine
the limit.

2
103. lim_zxz'i-#
¥= =2 x 4x-—2

104,  lim 2w+ Tx—4
x— 2t x2+x—2

105.  lim 224 7x—4
a=17 x2px-2

106. lim M
x— 1t X2+X—2

In the following exercises, assume that
lim f(x) =4, lim g(x) =9, and lim A(x) =6. Use
x—6 x—6 x—6

these three facts and the limit laws to evaluate each limit.

107. xlim62 f(x)g(x)

L8 —1
108, lim 6

100. xhi%( FG) + %g(x))

3
110, fim O
x—6 2

111. 1im6w/g(x) — f(x)

112, lim x- A(x)
x—>6

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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113. Xliinﬁ[(x + 1) f(0)]

114. limﬁ(f x) - g(x) — h(x))

[T] In the following exercises, use a calculator to draw
the graph of each piecewise-defined function and study the

graph to evaluate the given limits.

2
<3
115. (x):{x > K=
f x+4, x>3
a. lim_ f(x)
x—-3
b. lim f(x)
x—>3+
16 g(x)={x3—1, x<0
’ 1, x>0

a L‘H&- gx)

b. lim g(x)
x—ot
xX2-2x+1, x<2
117. h(x) = ’
3—1x, x>2
. lim_ A
a X —1>H21_ )
b. lim A(x)
X - 2+

In the following exercises, use the following graphs and the

limit laws to evaluate each limit.

177

—at
-6+
—gt
—104
y =fx)

10}
gl
6+
s

24

~16-14 12 -10 -8 6 X\fé

118.
119.
120.
121.
122.

123.

al
6l
_gl
_10)
y =9
lim _ (£(x) + g(x))

x— -3

lim_ (/00 = 3(0)

lim £ (x)g,g(X)

x—0

. 2+g)
x 1—1>HlS f®

lim (f0)?

tim 70 — 5@
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124. . 1_i)m_7(x -g(x)
125. N 1_i)m_9[x f)+2-g(x)]

126. [T] True or False? If
2x—1<g(x) <x?>—2x+3, then lim g(x) = 0.
X —

For the following problems, evaluate the limit using the
squeeze theorem. Use a calculator to graph the functions
f(x), g(x), and h(x) when possible.

. ) 1
127. [T] 611—I>n00 cos(e)

0, xrational

128. lim f(x), where f(x) ={ 2 ) )
x—0 x“, xirrrational

129. [T] In physics, the magnitude of an electric field
generated by a point charge at a distance r in vacuum
q

4megr

where

is governed by Coulomb’s law: E(r) = 5
E represents the magnitude of the electric field, q is the

charge of the particle, r is the distance between the particle

1
4rey

and where the strength of the field is measured, and

is Coulomb’s constant: 8.988 x 10° N-m?/C>.
a. Use a graphing calculator to graph E(r) given that

the charge of the particle is g = 10719,

b. Evaluate lim+ E(r). What is the physical
r—0

meaning of this quantity? Is it physically relevant?
Why are you evaluating from the right?

130. [T] The density of an object is given by its mass
divided by its volume: p = m/V.

a. Use a calculator to plot the volume as a function of
density (V = m/p), assuming you are examining

something of mass 8 kg (m = 8).

b. Evaluate 1im+ V(p) and explain the physical
p—0

meaning.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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2.4 | Continuity

Learning Objectives

2.4.1 Explain the three conditions for continuity at a point.
2.4.2 Describe three kinds of discontinuities.

2.4.3 Define continuity on an interval.

2.4.4 State the theorem for limits of composite functions.
2.4.5 Provide an example of the intermediate value theorem.

Many functions have the property that their graphs can be traced with a pencil without lifting the pencil from the page. Such
functions are called continuous. Other functions have points at which a break in the graph occurs, but satisfy this property
over intervals contained in their domains. They are continuous on these intervals and are said to have a discontinuity at a
point where a break occurs.

We begin our investigation of continuity by exploring what it means for a function to have continuity at a point. Intuitively,
a function is continuous at a particular point if there is no break in its graph at that point.

Continuity at a Point

Before we look at a formal definition of what it means for a function to be continuous at a point, let’s consider various
functions that fail to meet our intuitive notion of what it means to be continuous at a point. We then create a list of conditions
that prevent such failures.

Our first function of interest is shown in Figure 2.32. We see that the graph of f(x) has a hole at a. In fact, f(a) is

undefined. At the very least, for f(x) to be continuous at a, we need the following condition:

i. f(a) is defined.
y
f(x)

e

P

Figure 2.32 The function f(x) is not continuous at a

because f(a) is undefined.

However, as we see in Figure 2.33, this condition alone is insufficient to guarantee continuity at the point a. Although
f(a) is defined, the function has a gap at a. In this example, the gap exists because xli_r)na f(x) does not exist. We must add

another condition for continuity at a—namely,

ii. xh_r)na f(x) exists.
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e
<

Figure 2.33 The function f(x) is not continuous at a

because lim f(x) does not exist.
X = a

However, as we see in Figure 2.34, these two conditions by themselves do not guarantee continuity at a point. The function
in this figure satisfies both of our first two conditions, but is still not continuous at a. We must add a third condition to our
list:

iii. lim_f(x) = f(a).
y

f(x)

S

Figure 2.34 The function f(x) is not continuous at a
because Xh_r)na f(x) # f(a).

Now we put our list of conditions together and form a definition of continuity at a point.

Definition

A function f(x) is continuous at a point a if and only if the following three conditions are satisfied:
i. f(a) is defined
ii. xli_r)na f(x) exists
iii. ~ lim f(x) = f(a)

A function is discontinuous at a point a if it fails to be continuous at a.

The following procedure can be used to analyze the continuity of a function at a point using this definition.

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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Problem-Solving Strategy: Determining Continuity at a Point

1. Check to see if f(a) is defined. If f(a) is undefined, we need go no further. The function is not continuous

ata. If f(a) is defined, continue to step 2.

2. Compute xli_l)ng f(x). In some cases, we may need to do this by first computing lim_ f(x) and lim+ f(x).
xX—a x—>a

If xli_I)na f(x) does not exist (that is, it is not a real number), then the function is not continuous at a and the

problem is solved. If xli_r)na f(x) exists, then continue to step 3.

3. Compare f(a) and xli_r)naf(x). If xli_I)naf(x) # f(a), then the function is not continuous at a. If

xli_r)na f(x) = f(a), then the function is continuous at a.

The next three examples demonstrate how to apply this definition to determine whether a function is continuous at a given
point. These examples illustrate situations in which each of the conditions for continuity in the definition succeed or fail.

Example 2.26

Determining Continuity at a Point, Condition 1

Using the definition, determine whether the function f(x) = (x2 —4)/(x —2) is continuous at x = 2. Justify

the conclusion.

Solution
Let’s begin by trying to calculate f(2). We can see that f(2) =0/0, which is undefined. Therefore,

2
fx) = ); __24 is discontinuous at 2 because f(2) is undefined. The graph of f(x) is shown in Figure 2.35.

y

f(x)

Figure 2.35 The function f(x) is discontinuous at 2 because
f(2) is undefined.
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Example 2.27

Determining Continuity at a Point, Condition 2

2 .
Using the definition, determine whether the function f(x) = {—x +4 ifx<3 is continuous at x = 3. Justify

4x—-8 ifx>3
the conclusion.

Solution
Let’s begin by trying to calculate f(3).

f@) = —-(3%+4=-5.

Thus, f(3) is defined. Next, we calculate lim3 f(x). To do this, we must compute lin31_ f(x) and
x = x -

. Lm; WACE
lim_ () = - BH+4=-5
and

lim+ fx)=43)-8=4.

x—3
Therefore, lim3 f(x) does not exist. Thus, f(x) is not continuous at 3. The graph of f(x) is shown in Figure
X —

2.36.

f(x)

Figure 2.36 The function f(x) is not continuous at 3

because lim_f(x) does not exist.
x—3

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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Example 2.28

Determining Continuity at a Point, Condition 3

. - . . SINX g 2 ()
Using the definition, determine whether the function f(x) =9 X
1ifx=0

is continuous at x = 0.

Solution

First, observe that
£O) = 1.
Next,
li = lim SIDX _ 1
xl—r>n0f(x) xl—I>nO X
Last, compare f(0) and lim1 f(x). We see that
X —

fO=1= lim f(x).

Since all three of the conditions in the definition of continuity are satisfied, f(x) is continuous at x = 0.

@ 2.21 2x+1 ifx<1
Using the definition, determine whether the function f(x) = 2 if x = 1 is continuous at x = 1.
—x+4 ifx>1

If the function is not continuous at 1, indicate the condition for continuity at a point that fails to hold.

By applying the definition of continuity and previously established theorems concerning the evaluation of limits, we can
state the following theorem.

Theorem 2.8: Continuity of Polynomials and Rational Functions

Polynomials and rational functions are continuous at every point in their domains.

Proof

Previously, we showed that if p(x) and ¢g(x) are polynomials, xli_rpap(x) = p(a) for every polynomial p(x) and

i 200 _ pl@)

A5 = q@ as long as g(a) # 0. Therefore, polynomials and rational functions are continuous on their domains.

O

We now apply Continuity of Polynomials and Rational Functions to determine the points at which a given rational
function is continuous.

Example 2.29

Continuity of a Rational Function
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Solution

The rational function f(x) = o

For what values of x is f(x) = §+ 1

x+1

is continuous for every value of x except x = 5.

@ 2.22  For what values of xis f(x) = 3x* — 4x? continuous?

Types of Discontinuities

Chapter 2 | Limits

As we have seen in Example 2.26 and Example 2.27, discontinuities take on several different appearances. We
classify the types of discontinuities we have seen thus far as removable discontinuities, infinite discontinuities, or jump
discontinuities. Intuitively, a removable discontinuity is a discontinuity for which there is a hole in the graph, a jump
discontinuity is a noninfinite discontinuity for which the sections of the function do not meet up, and an infinite
discontinuity is a discontinuity located at a vertical asymptote. Figure 2.37 illustrates the differences in these types of
discontinuities. Although these terms provide a handy way of describing three common types of discontinuities, keep in
mind that not all discontinuities fit neatly into these categories.

y y y
[ ] o/f E
X I
f(x) ¢ I

. il —

a x a a x
removable jump ' infinite
discontinuity discontinuity ‘| discontinuity

(@) (b) (c)

Figure 2.37 Discontinuities are classified as (a) removable, (b) jump, or (c) infinite.

These three discontinuities are formally defined as follows:

Definition

If f(x) is discontinuous at a, then

1. f has a removable discontinuity at a if xli_r)na f(x) exists. (Note: When we state that xlgna f(x) exists, we

mean that xli_l)na f(x) = L, where L is a real number.)

2. f has a jump discontinuity at a if lim_ f(x) and 1im+ f(x) both exist, but lim_ f(x) # lim+ f(x).
xX—a x—a

X —da

X—a

(Note: When we state that lim_ f(x) and lim f(x) both exist, we mean that both are real-valued and that
X —=da

neither take on the values +.)

3. f has an infinite discontinuity at a if lim_ f(x) = +oc0 or 1im+ f(x) = +o0.
X —a

X —a

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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Example 2.30

Classifying a Discontinuity

2
In Example 2.26, we showed that f(x) = ); __24

is discontinuous at x = 2. Classify this discontinuity as

removable, jump, or infinite.

Solution

To classify the discontinuity at 2 we must evaluate lim2 f(x):
X —

2
: — Iim X —4
A, S0 = imS s
= lim (x=2)(x+2)
x—2 x—2
= lim (x + 2)
)C—)2
=4.

Since fis discontinuous at 2 and lim2 f(x) exists, fhas a removable discontinuity at x = 2.
X —

Example 2.31

Classifying a Discontinuity

—-x2+4ifx<3

) is discontinuous at x = 3. Classify this
4x—-8 ifx>3

In Example 2.27, we showed that f(x) ={

discontinuity as removable, jump, or infinite.

Solution

Earlier, we showed that f is discontinuous at 3 because lim3 f(x) does not exist. However, since
X —

1in31_ f(x) =-=5 and lim+ f(x) = 4 both exist, we conclude that the function has a jump discontinuity at 3.
X =

x—3

Example 2.32

Classifying a Discontinuity

x+2
x+1

discontinuity as removable, jump, or infinite.

Determine whether f(x) = is continuous at —1. If the function is discontinuous at —1, classify the

Solution

The function value f(—1) is undefined. Therefore, the function is not continuous at —1. To determine the type of
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discontinuity, we must determine the limit at —1. We see that  lim x+2 —oc0 and lim x+2

= +o0.
x> -1"x+1 vt xt+1

Therefore, the function has an infinite discontinuity at —1.

2.23 2
@ For f(x) = {x3 1£x # 1, decide whether fis continuous at 1. If f is not continuous at 1, classify the
ifx=

discontinuity as removable, jump, or infinite.

Continuity over an Interval

Now that we have explored the concept of continuity at a point, we extend that idea to continuity over an interval. As
we develop this idea for different types of intervals, it may be useful to keep in mind the intuitive idea that a function is
continuous over an interval if we can use a pencil to trace the function between any two points in the interval without lifting
the pencil from the paper. In preparation for defining continuity on an interval, we begin by looking at the definition of what
it means for a function to be continuous from the right at a point and continuous from the left at a point.

Continuity from the Right and from the Left

A function f(x) is said to be continuous from the right at a if lim+ fx) = f(a).
X —=a

A function f(x) is said to be continuous from the left at a if lim_ f(x) = f(a).
X —=a

A function is continuous over an open interval if it is continuous at every point in the interval. A function f(x) is continuous
over a closed interval of the form [a, b] if it is continuous at every point in (a, ) and is continuous from the right at a
and is continuous from the left at b. Analogously, a function f(x) is continuous over an interval of the form (a, b] if it is
continuous over (a, b) and is continuous from the left at b. Continuity over other types of intervals are defined in a similar
fashion.

Requiring that lim+ f(x) = f(a) and hr%‘ f(x) = f(b) ensures that we can trace the graph of the function from the
x—a x =

point (a, f(a)) to the point (b, f(b)) without lifting the pencil. If, for example, lim+ f(x) # f(a), we would need to lift

X—=a

our pencil to jump from f(a) to the graph of the rest of the function over (a, b

Example 2.33

Continuity on an Interval

x—1
xZ42x

State the interval(s) over which the function f(x) = is continuous.

Solution

Since f(x) = % is a rational function, it is continuous at every point in its domain. The domain of
X<+ 2x

f(x) is the set (—o0, —=2) U (-2, 0) U (0, +0). Thus, f(x) is continuous over each of the intervals

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12
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(=00, =2), (=2, 0), and (0, +o0).

Example 2.34

Continuity over an Interval

State the interval(s) over which the function f(x) = V4 — x? is continuous.

Solution

From the limit laws, we know that lim V4 — x2 = V4 — 42 for all values of a in (=2, 2). We also know that

lim V4 —x2=0 exists and ]1m V4 —x2=0 exists. Therefore, f(x) is continuous over the interval

x— =2t

[-2, 2].

@ 2.24  State the interval(s) over which the function f(x) = Vx + 3 is continuous.

The Composite Function Theorem allows us to expand our ability to compute limits. In particular, this theorem
ultimately allows us to demonstrate that trigonometric functions are continuous over their domains.

Theorem 2.9: Composite Function Theorem

If f(x) is continuous at L and xli_r)nag(x) =L, then

Jim f(g(x)) = f( Jim g(x)) = f(L).

Before we move on to Example 2.35, recall that earlier, in the section on limit laws, we showed limocosx =1 =cos(0).
x =

Consequently, we know that f(x) = cosx is continuous at 0. In Example 2.35 we see how to combine this result with the

composite function theorem.

Example 2.35

Limit of a Composite Cosine Function

Evaluate lim cos (x - Q)
x = n/2 2

Solution
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.

The given function is a composite of cosx and x — % Since lim (x )

) =0 and cosx is continuous at 0,
X = T

we may apply the composite function theorem. Thus,

N Enllz cos(x - %) = cos En)ﬂz(x — %)) =cos(0) = 1.

@ 2.25 Evaluate xli_r)n”sin(x—zr).

The proof of the next theorem uses the composite function theorem as well as the continuity of f(x) =sinx and

g(x) = cosx at the point 0 to show that trigonometric functions are continuous over their entire domains.

Theorem 2.10: Continuity of Trigonometric Functions

Trigonometric functions are continuous over their entire domains.

Proof
We begin by demonstrating that cosx is continuous at every real number. To do this, we must show that xli_I)nacosx = cosa

for all values of a.

lim cosx = lim cos((x —a) + a) rewritex =x—a+a
X—=a X—=a

Xli_r)na(cos (x — a)cosa — sin(x — a)sina) apply the identity for the cosine of the sum of two angles

= cos (Xlim (x - a))cosa - sin(xlim (x— a))sina lim (x — a) = 0, and sinx and cosx are continuous at 0
- d - d X—=a
= cos(0)cosa — sin(0)sina evaluate cos(0) and sin(0) and simplify
=1-cosa—0-sina = cosa.
The proof that sinx is continuous at every real number is analogous. Because the remaining trigonometric functions may
be expressed in terms of sinx and cosx, their continuity follows from the quotient limit law.
O

As you can see, the composite function theorem is invaluable in demonstrating the continuity of trigonometric functions.
As we continue our study of calculus, we revisit this theorem many times.

The Intermediate Value Theorem

Functions that are continuous over intervals of the form [a, b], where a and b are real numbers, exhibit many useful

properties. Throughout our study of calculus, we will encounter many powerful theorems concerning such functions. The
first of these theorems is the Intermediate Value Theorem.

Theorem 2.11: The Intermediate Value Theorem

Let fbe continuous over a closed, bounded interval [a, b]. If z is any real number between f(a) and f(b), then there

is a number c in [a, b] satisfying f(c) = z in Figure 2.38.
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o )

f@T-"--

é c b
Figure 2.38 There is a number ¢ € [a, b| that satisfies

flo)=z.

Example 2.36

Application of the Intermediate Value Theorem

Show that f(x) = x — cosx has at least one zero.

Solution
Since f(x) = x — cosx is continuous over (—oo, +00), it is continuous over any closed interval of the form
la, b]. If you can find an interval [a, b] such that f(a) and f(b) have opposite signs, you can use the
Intermediate Value Theorem to conclude there must be a real number c in (a, b) that satisfies f(c) = 0. Note
that

f0)=0-cos(0)=-1<0

and

5)-5-cog=5>0

Using the Intermediate Value Theorem, we can see that there must be a real number c in [0, 7/2] that satisfies

f(c) = 0. Therefore, f(x) =x — cosx has at least one zero.

Example 2.37

When Can You Apply the Intermediate Value Theorem?

If f(x) is continuous over [0, 2], f(0) >0 and f(2) > 0, can we use the Intermediate Value Theorem to

conclude that f(x) has no zeros in the interval [0, 2]? Explain.
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Solution
No. The Intermediate Value Theorem only allows us to conclude that we can find a value between f(0) and

f(2); it doesn’t allow us to conclude that we can’t find other values. To see this more clearly, consider the

function f(x) = (x — 1)2. It satisfies f(0)=1>0, f(2)=1>0, and f(1)=0.

Example 2.38

When Can You Apply the Intermediate Value Theorem?

For f(x)=1/x, f(-1)=—-1<0 and f(1)=1> 0. Can we conclude that f(x) has a zero in the interval
[-1, 1]?

Solution

No. The function is not continuous over [—1, 1]. The Intermediate Value Theorem does not apply here.

@' 2.26  Show that f(x) = x> — x*> — 3x+ 1 has a zero over the interval [0, 1].
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2.4 EXERCISES

For the following exercises, determine the point(s), if any,
at which each function is discontinuous. Classify any
discontinuity as jump, removable, infinite, or other.

131, f(x)=-L
132. =

1t x2+1
133, f(x) =

134, gy=1""+1

5
135. =
J0 ==
—x=2|
136, f(x) =2==
137. H(x) = tan2x
3
138. f()=—1Lt3
! 2+5t+6

For the following exercises, decide if the function
continuous at the given point. If it is discontinuous, what
type of discontinuity is it?

5x+3

139. f(x)zx at x=1
140. () = 8inf=cost 5 ¢ —
141. g(u) = 2u—1 2, atuz%
I ifu=41
2 2
142, fy) =30 oy
’ tan(zy)’
143. x“—e 1fx<0’ t x=0
f@= {—1 ifx>0 o
xsin(x)ifx <«
144. = ,at x=
f® {xtan(x)ifx>ﬂ ax=n

In the following exercises, find the value(s) of k that makes
each function continuous over the given interval.

3x+2, x<k

145. f(x)z{zx—3, k<x<8

191

sinf, 0<O0<Z

2
146. 0) =
16 cos (0 + k), %59577
x> +3x+2
147, f(x) = { Y12 o YF 2
x=-2

kx
<x<
148. (x):{ e V=
f x+3, 4<x<

| vkx, 0<x<3
f)=
+1, 3<x<10

149.

In the following exercises, use the Intermediate Value
Theorem (IVT).

3x2—4, x<2
S+4x, x>2
[0, 4], there is no value of x such that A(x) = 10,
although h(0) < 10 and Ah(4) > 10. Explain why this
does not contradict the IVT.

150. Let h(x) ={ Over the interval

151. A particle moving along a line has at each time ¢
a position function s(¢), which is continuous. Assume

s(2) =5 and s(5) =
its position is given by h(f) = s(¢) — ¢. Explain why there

2. Another particle moves such that

must be a value ¢ for 2 < ¢ < 5 such that A(c) =0

152. [T] Use the statement “The cosine of ¢ is equal to t
cubed.”
a. Write a mathematical equation of the statement.
b. Prove that the equation in part a. has at least one
real solution.
c. Use a calculator to find an interval of length 0.01
that contains a solution.

153. Apply the IVT to determine whether 2* = x> has
(1.25, 1.375] or

Briefly explain your response for each

a solution in one of the intervals
[1.375, 1.5].

interval.
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154. Consider the graph of the function y = f(x) shown
in the following graph.

DR
-1+

a. Find all values for which the function is
discontinuous.

b. For each value in part a., state why the formal
definition of continuity does not apply.

c. Classify each discontinuity as either

removable, or infinite.

jump,

3x, x> 1

155. Let f(x) =1 , .

x7,x<1

a. Sketch the graph of f.
b. Is it possible to find a value k such that f(1) =k,
which makes f(x)

numbers? Briefly explain.

continuous for all real

2

_xt—1 _
156. Let f(x) = 0 for x# —1, 1.

a. Sketch the graph of f.
b. Is it possible to find values k; and k, such that

f(=D =k and f(1)=ky,

f(x) continuous for all real numbers? Briefly

and that makes

explain.

157. Sketch the graph of the function y = f(x) with

properties i. through vii.
i. The domain of fis (—o0, +00).

ii. fhas an infinite discontinuity at x = —6.
iii. f(-6)=3
iv. lim_ f(x)= lim f(x)=2

x— =3 +

x— =3
v. f(=3)=3
vi. f is left continuous but not right continuous at
x=3.
vii. lim oof(x) = —o0 and . _1)1r$ oof(x) =400
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158. Sketch the graph of the function y = f(x) with

properties i. through iv.
i. The domain of fis [0, 5].

ii. lim f(x) and lim_ f(x) exist and are equal.
x> 17 x=1

iii. f(x) is left continuous but not continuous at
x =2, and right continuous but not continuous at
x=3.

iv.  f(x) has a removable discontinuity at x =1, a

jump discontinuity at x =2, and the following

limits hold: lin31_ f(x) = - and
X —
lim f(x)=2.
x— 3t

In the following exercises, suppose y = f(x) is defined for

all x. For each description, sketch a graph with the indicated
property.

159. Discontinuous at x = 1 with lim . f(x)=-1 and
x> -

im0 =4

160. Discontinuous at x =2 but continuous elsewhere
with lim f(x) =1

x— ()f ) 2
Determine whether each of the given statements is true.

Justify your response with an explanation or
counterexample.

161. f(r) = % is continuous everywhere.
e

162. If the left- and right-hand limits of f(x) as x — a

exist and are equal, then f cannot be discontinuous at
x=a.

163. If a function is not continuous at a point, then it is not
defined at that point.

164. According to the IVT, cosx —sinx —x =2 has a
solution over the interval [—1, 1].

165. If f(x) is continuous such that f(a) and f(b) have
opposite signs, then f(x) = 0 has exactly one solution in
la, b].
. 2—4x+3 . :
166. The function f(x) = 2—1 is continuous
X2

over the interval [0, 3].
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167. If  f(x) is
fla), f(b) >0,

interval |[a, b].

continuous  everywhere and

then there is no root of f(x) in the

[T] The following problems consider the scalar form of
Coulomb’s law, which describes the electrostatic force
between two point charges, such as electrons. It is given by

. lg1 42l
r2

the equation F(r) =k ,  where k, is Coulomb’s

constant, g; are the magnitudes of the charges of the two

particles, and r is the distance between the two particles.

168. To simplify the calculation of a model with many
interacting particles, after some threshold value r = R,

we approximate F as zero.
a. Explain the physical
assumption.
What is the force equation?
c. Evaluate the force F using both Coulomb’s law
and our approximation, assuming two protons with
a charge magnitude of

1.6022 x 10~ coulombs ©), and the

Coulomb constant k, = 8.988 X 10°Nm?%/C? are

1 m apart. Also, assume R < 1m. How much

reasoning behind this

inaccuracy does our approximation generate? Is our
approximation reasonable?

d. Is there any finite value of R for which this system
remains continuous at R?

169. Instead of making the force O at R, instead we let
the force be 1072 for r > R. Assume two protons, which

have a magnitude of charge 1.6022 X 1071 C, and the

Coulomb constant k, = 8.988 x 10°Nm?/C2. Is there a

value R that can make this system continuous? If so, find
it.

Recall the discussion on spacecraft from the chapter
opener. The following problems consider a rocket launch
from Earth’s surface. The force of gravity on the rocket is

given by F(d) = — mkld®, where m is the mass of the

rocket, d is the distance of the rocket from the center of
Earth, and k is a constant.

170. [T] Determine the value and units of k given that the
mass of the rocket is 3 million kg. (Hint: The distance from
the center of Earth to its surface is 6378 km.)

193

171. [T] After a certain distance D has passed, the
gravitational effect of Earth becomes quite negligible, so

we can approximate the force function by
~mK it g <D
F(d) = d . Using the value of k found in

10,000 ifd > D

the previous exercise, find the necessary condition D such
that the force function remains continuous.

172. As the rocket travels away from Earth’s surface, there
is a distance D where the rocket sheds some of its mass,
since it no longer needs the excess fuel storage. We can

—m—lzkifd<D
. Is there
ifd>D

write this function as F(d) =
_ m2 k
d2

a D value such that this function is continuous, assuming
my;#my?

Prove the following functions are continuous everywhere
173. f(6) =sinf
174. g(x) = x|

0if xis irrational

175. Whereis f(x :{ continuous?
S 1 if x is rational
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2.5 | The Precise Definition of a Limit

Learning Objectives

2.5.1 Describe the epsilon-delta definition of a limit.

2.5.2 Apply the epsilon-delta definition to find the limit of a function.

2.5.3 Describe the epsilon-delta definitions of one-sided limits and infinite limits.
2.5.4 Use the epsilon-delta definition to prove the limit laws.

By now you have progressed from the very informal definition of a limit in the introduction of this chapter to the intuitive
understanding of a limit. At this point, you should have a very strong intuitive sense of what the limit of a function means
and how you can find it. In this section, we convert this intuitive idea of a limit into a formal definition using precise
mathematical language. The formal definition of a limit is quite possibly one of the most challenging definitions you will
encounter early in your study of calculus; however, it is well worth any effort you make to reconcile it with your intuitive
notion of a limit. Understanding this definition is the key that opens the door to a better understanding of calculus.

Quantifying Closeness

Before stating the formal definition of a limit, we must introduce a few preliminary ideas. Recall that the distance between
two points a and b on a number line is given by |a — b|.

+ The statement |f(x) — L| < & may be interpreted as: The distance between f(x) and L is less than ¢.
¢ The statement 0 < |x — al < 0 may be interpreted as: x # a and the distance between x and a is less than 6.

It is also important to look at the following equivalences for absolute value:

 The statement |f(x) — L| < ¢ is equivalent to the statement L — ¢ < f(x) < L+ ¢.
¢ The statement 0 < |x — al < ¢ is equivalent to the statement a — 6 < x < a+ 6 and x # a.

With these clarifications, we can state the formal epsilon-delta definition of the limit.

Definition

Let f(x) be defined for all x # a over an open interval containing a. Let L be a real number. Then
Jim, /() =L

if, for every € > 0, there existsa & > 0, suchthatif 0 < |x—a| <&, then |f(x)—L| < e.

This definition may seem rather complex from a mathematical point of view, but it becomes easier to understand if we
break it down phrase by phrase. The statement itself involves something called a universal quantifier (for every & > 0), an

existential quantifier (there exists a 6 > 0), and, last, a conditional statement (if 0 < |x —al < 8, then [f(x) — L| < é).
Let’s take a look at Table 2.9, which breaks down the definition and translates each part.
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Definition Translation

1. For every ¢ > 0, 1. For every positive distance € from L,

2. there exists a 6 > 0, 2. There is a positive distance 6 from a,

3. such that 3. such that

4.if 0<|x—al <4, then 4.if xis closerthan § toaand x # a, then f(x) is closer than
lf() = L| <e. gtoL.

Table 2.9 Translation of the Epsilon-Delta Definition of the Limit

We can get a better handle on this definition by looking at the definition geometrically. Figure 2.39 shows possible values
of & for various choices of ¢ > 0 for a given function f(x), a number a, and a limit L at a. Notice that as we choose

smaller values of ¢ (the distance between the function and the limit), we can always find a § small enough so that if we
have chosen an x value within § of a, then the value of f(x) is within ¢ of the limit L.

y y y
L+¢e -

- L+ e Ferie o

L L L

P a+sé — | L-¢ 4+——-----—
L — ¢

a-s ~ f(x) f(x) f(x)
\
a X a X a X
8 3 é 8 8 8
(@ (b) (©

Figure 2.39 These graphs show possible values of &, given successively smaller choices of ¢.

@ Visit the following applet to experiment with finding values of ¢ for selected values of &:

¢ The epsilon-delta definition of limit (http://lwww.openstax.org/l/20_epsilondelt)

Example 2.39 shows how you can use this definition to prove a statement about the limit of a specific function at a
specified value.

Example 2.39

Proving a Statement about the Limit of a Specific Function

Prove that liml(2x +1)=23.
X —

Solution
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Let ¢ > 0.

The first part of the definition begins “For every & > 0.” This means we must prove that whatever follows is true
no matter what positive value of ¢ is chosen. By stating “Let ¢ > 0,” we signal our intent to do so.

— £
Choose 6 = 5

The definition continues with “there exists a é > 0.” The phrase “there exists” in a mathematical statement is
always a signal for a scavenger hunt. In other words, we must go and find . So, where exactly did 6 = &/2
come from? There are two basic approaches to tracking down 6. One method is purely algebraic and the other is
geometric.

We begin by tackling the problem from an algebraic point of view. Since ultimately we want |(2x + 1) — 3| < &,
we begin by manipulating this expression: [(2x+ 1) — 3| < ¢ is equivalent to |2x — 2| < &, which in turn
is equivalent to [2|lx — 1] < &. Last, this is equivalent to |x — 1] < &/2. Thus, it would seem that § = &/2 is
appropriate.

We may also find 6 through geometric methods. Figure 2.40 demonstrates how this is done.

y
+ B 3 is the length of the smaller of
346 gl =Xl the two distances marked in
brown.
T d=min{l+3-11-(1-%)}
3 =min{5, 5}
i .
33—
: X

Figure 2.40 This graph shows how we find 6 geometrically.

Assume 0 < |x— 1| < 8. When & has been chosen, our goal is to show that if 0 <|x— 1<, then
|(2x + 1) — 3| < e. To prove any statement of the form “If this, then that,” we begin by assuming “this” and
trying to get “that.”

Thus,
|Cx+1)=3] =12x-2| property of absolute value
=[2(x = 1)
=2lx - 1| 21=2
=2Ix—1]
<20 here’s where we use the assumption that 0 < [x — 1| < &
=2 % =¢ here’s where we use our choice of § = /2
Analysis
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In this part of the proof, we started with |[(2x + 1) — 3| and used our assumption 0 < |x — 1| < § in a key part
of the chain of inequalities to get |[(2x + 1) — 3| to be less than . We could just as easily have manipulated the

assumed inequality 0 < |x — 1] < § to arrive at |(2x + 1) — 3| < € as follows:

O<lx=11<6 =>Ix-11<6
> —6<x—-1<6

_E _ £
> 2<x 1<2

> —e<2x—-2<e¢
> —e<2x—-2<e¢
> R2x—-2l<e¢

> |2x+1)-3|<e.

Therefore, lim1 (2x + 1) = 3. (Having completed the proof, we state what we have accomplished.)
X =

After removing all the remarks, here is a final version of the proof:

Let £ > 0.
Choose 6 = €/2.
Assume 0 < |x — 1] < 6.

Thus,

[Qx+1)=3] =12x-2]
=[2(x = 1)
=2llx - 1|
=2Ix—1]
<26
—2.£
=2 5

=E&.

Therefore, liml(2x +1)=23.
X —

The following Problem-Solving Strategy summarizes the type of proof we worked out in Example 2.39.

Problem-Solving Strategy: Proving That rli—lpaf(x) = L for a Specific Function f(x)

1. Let’s begin the proof with the following statement: Let & > 0.

2. Next, we need to obtain a value for J. After we have obtained this value, we make the following statement,
filling in the blank with our choice of 6 : Choose 6 =

3. The next statement in the proof should be (at this point, we fill in our given value for a):
Assume 0 < |x —al < 4.

4. Next, based on this assumption, we need to show that |f(x) — L| < &, where f(x) and L are our function

f(x) and our limit L. At some point, we need to use 0 < |x —al < 6.

5. We conclude our proof with the statement: Therefore, xlgna f(x)=L.
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Example 2.40

Proving a Statement about a Limit

Complete the proof that lim 1(4x + 1) = —3 by filling in the blanks.
X — —

Let
Choose 6 =

Assume 0 < |x — | < 6.

Thus, | - | = €.

Solution
We begin by filling in the blanks where the choices are specified by the definition. Thus, we have
Let £ > 0.

Choose 6 =
Assume 0 < [x — (=1)] < 6. (or equivalently, 0 < |x + 1| < 8.)
Thus, |[(4x+ 1) = (=3)|=4x+4|=14llx+ 1] < 46 €.

£

Focusing on the final line of the proof, we see that we should choose 6§ =

N

We now complete the final write-up of the proof:

Let ¢ > 0.

Choose & = %

Assume 0 < |x — (—1)| < & (or equivalently, 0 < |x + 1| < &.)

Thus, |[(4x+ 1) — (=3)|=[4x+ 4| =14lx+ 1| <40 =4(e/4d) = ¢.

@ 2.27 Complete the proof that lim2(3x —2) =4 by filling in the blanks.
X —

Let

Choose 6 =
Assume 0 < |x — | <

Thus,

| - | = €.

Therefore, lim2(3x —-2)=4.
X -

In Example 2.39 and Example 2.40, the proofs were fairly straightforward, since the functions with which we were
working were linear. In Example 2.41, we see how to modify the proof to accommodate a nonlinear function.

Example 2.41
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Proving a Statement about the Limit of a Specific Function (Geometric Approach)

Prove that lim x2 = 4.
x—2

Solution
1. Let &> 0. The first part of the definition begins “For every ¢ > 0,” so we must prove that whatever
follows is true no matter what positive value of ¢ is chosen. By stating “Let ¢ > 0,” we signal our intent
to do so.
2. Without loss of generality, assume & < 4. Two questions present themselves: Why do we want & < 4

and why is it okay to make this assumption? In answer to the first question: Later on, in the process of
solving for 8, we will discover that & involves the quantity Y4 — e. Consequently, we need & < 4. In
answer to the second question: If we can find 6 > O that “works” for € < 4, then it will “work” for any
& > 4 as well. Keep in mind that, although it is always okay to put an upper bound on ¢, it is never okay
to put a lower bound (other than zero) on «.

3. Choose 6 = min{2 —Vd—eg, V4 +e— 2}. Figure 2.41 shows how we made this choice of d.

y
g '—/f _ w2 3 is the smaller of the
o) =x two distances marked in
red.
4 d=min{2-4—¢,4+e-2}

/’(2\’\*1x

xX2=4—¢ X2=4+¢

X=V4 —¢ X=V4+¢

Figure 2.41 This graph shows how we find § geometrically for a given €
for the proof in Example 2.41.

4. We mustshow: If 0 < [x—2| <5, then Ix”>—4l<e, sowe must begin by assuming

0<Ix=2/<4é.

We don’t really need O<I|x—2| (in other words, x#2) for this proof. Since
O0<Ix=2I<d=>Ix—2I <4, itisokaytodrop 0 < |x—2|.

x—2| <6.

Hence,

—-6<x—-2<56.

Recall that 6= min{2 —V4—e, V4 +e— 2}. Thus, 0<2-V4—¢ and consequently
—(2 —V4—¢)< —05. We also use 6 <V4+¢e—2 here. We might ask at this point: Why did we

substitute 2 —V4 — & for § on the left-hand side of the inequality and V4 4+ & —2 on the right-hand
side of the inequality? If we look at Figure 2.41, we see that 2 — V4 — & corresponds to the distance on
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the left of 2 on the x-axis and V4 + & — 2 corresponds to the distance on the right. Thus,

—2-VAd—g) < —s<x-2<5<Vh+e-2.

We simplify the expression on the left:

2+V4—e<x—-2<\V4+e-2.

Then, we add 2 to all parts of the inequality:

V4 —e<x<Vd+e.

We square all parts of the inequality. It is okay to do so, since all parts of the inequality are positive:

d—e<xt<d+te

We subtract 4 from all parts of the inequality:

—e<xi-4d<e

Last,
x“—4dl<e
5. Therefore,
lim x“ =4
X — 2

2.28 Find § corresponding to &€ > 0 for a proof that limgﬁ =3.
X =

The geometric approach to proving that the limit of a function takes on a specific value works quite well for some functions.
Also, the insight into the formal definition of the limit that this method provides is invaluable. However, we may also
approach limit proofs from a purely algebraic point of view. In many cases, an algebraic approach may not only provide
us with additional insight into the definition, it may prove to be simpler as well. Furthermore, an algebraic approach is the
primary tool used in proofs of statements about limits. For Example 2.42, we take on a purely algebraic approach.

Example 2.42

Proving a Statement about the Limit of a Specific Function (Algebraic Approach)

Prove that lim (x2 —2x+ 3) =6.

x— -1

Solution
Let’s use our outline from the Problem-Solving Strategy:

1. Let £> 0.

2. Choose & = min{1, &/5}. This choice of 6§ may appear odd at first glance, but it was obtained by
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taking a look at our ultimate desired inequality: |(x2 - 2x+ 3) - 6| < e. This inequality is equivalent

£
-3

Unfortunately, our choice of § must depend on € only and no other variable. If we can replace |x — 3| by

to |x+1]-1x — 3| < e. At this point, the temptation simply to choose ¢ = T is very strong.

a numerical value, our problem can be resolved. This is the place where assuming 6 < 1 comes into play.
The choice of 6 <1 here is arbitrary. We could have just as easily used any other positive number. In
some proofs, greater care in this choice may be necessary. Now, since 6 <1 and [x+ 1| <6 <1, we

are able to show that |x — 3| < 5. Consequently, |[x+ 1]|-Ix — 3| < |x+ 1|-5. At this point we realize

that we also need 6 < ¢/5. Thus, we choose 6 = min{1, &/5}.
3. Assume 0 < |x + 1] < 8. Thus,

[x+1] < land|x+ 1] <%.

Since |x+ 1] < 1, we may conclude that —1 < x4+ 1 < 1. Thus, by subtracting 4 from all parts of the
inequality, we obtain —5 < x — 3 < —1. Consequently, |x — 3| < 5. This gives us

(=20 4+3) =6 =l + 1] k-3 < £-5=e.

Therefore,

lim (x*-2x+3)=6.

x— -

@ 2.29  Complete the proof that lim1x2 =1.
X =

Let £ > 0; choose 6 = min{1, £/3}; assume 0 < |x — 1| < 6.

Since |x — 1| < 1, we may conclude that —1 < x—1 < 1. Thus, 1 < x+ 1 < 3. Hence, |x+ 1] < 3.

You will find that, in general, the more complex a function, the more likely it is that the algebraic approach is the easiest to
apply. The algebraic approach is also more useful in proving statements about limits.

Proving Limit Laws

We now demonstrate how to use the epsilon-delta definition of a limit to construct a rigorous proof of one of the limit laws.
The triangle inequality is used at a key point of the proof, so we first review this key property of absolute value.

Definition

The triangle inequality states that if a and b are any real numbers, then |a + b| < |al + |b].

Proof

We prove the following limit law: If Xli_r)ng f(x) =L and xli_r)nag(x) = M, then xli_r)na( f)+gx)=L+M.

Let € > 0.

Choose §; > 0 sothatif 0 < |x—al <&, then |f(x)—L| < €/2.

Choose 6, > 0 sothatif 0 < |x—al < §,, then |g(x) — M| < &/2.
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Choose & = min{5, &,}.

Assume 0 < |x —al < 6.

Thus,
O0<Ilx—al<d; and0 < |x —al < §5.
Hence,

IFC) +g(0)) — (L + M) =|f(x) — L)+ (g(x) — M)
<|f) = LI+ |g(x) — M|
<%+%=a

O

We now explore what it means for a limit not to exist. The limit xli_r)na f(x) does not exist if there is no real number L for
which xlgna f(x) = L. Thus, for all real numbers L, xli_r)na f(x) # L. To understand what this means, we look at each part

of the definition of xli_r)na f(x) = L together with its opposite. A translation of the definition is given in Table 2.10.

Definition Opposite

1. Forevery ¢ >0, 1. There exists ¢ > 0 so that

2. there existsa 6 > 0, so that 2. forevery 6 > 0,

3.if 0 <|x—al <4, then 3. There is an x satisfying 0 < |x —al < § so that
lf(x) — L] < e. lf(x) = L] > &.

Table 2.10 Translation of the Definition of xli_rpaf(x) = L and its Opposite

Finally, we may state what it means for a limit not to exist. The limit xlgna f(x) does not exist if for every real number L,

there exists a real number ¢ > 0 so that for all § > 0, there is an x satisfying 0 < |x —al < §, sothat [f(x) —L| > .
Let’s apply this in Example 2.43 to show that a limit does not exist.

Example 2.43

Showing That a Limit Does Not Exist

Show that limolxil does not exist. The graph of f(x) = Ix|/x is shown here:
X —
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10—m78 ———

Solution
Suppose that L is a candidate for a limit. Choose ¢ = 1/2.

Let 6 > 0. Either L>0 or L<O0. If L>0, thenlet x = — §/2. Thus,
_o=|-8_0ol=9
k-o=|-2-0/=%<s

and

_—E"L

2

=F1—U=L+121>%=&

On the other hand, if L < 0, thenlet x = 6/2. Thus,

w-o=2-0/=%<s

and
3
2 _ - 1_
E_L —I1—LI—IL|+121>2—3.
2
Thus, for any value of L, lim % #+ L.
x—=0

One-Sided and Infinite Limits

Just as we first gained an intuitive understanding of limits and then moved on to a more rigorous definition of a limit,
we now revisit one-sided limits. To do this, we modify the epsilon-delta definition of a limit to give formal epsilon-delta
definitions for limits from the right and left at a point. These definitions only require slight modifications from the definition
of the limit. In the definition of the limit from the right, the inequality 0 < x —a < 6 replaces 0 < |x —al < 6, which

ensures that we only consider values of x that are greater than (to the right of) a. Similarly, in the definition of the limit from
the left, the inequality —6 < x —a < 0 replaces 0 < |x —al < §, which ensures that we only consider values of x that

are less than (to the left of) a.

Definition

Limit from the Right: Let f(x) be defined over an open interval of the form (a, b) where a < b. Then,
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lim_f(x) =L

X—a
if for every € > 0, there existsa 6 > 0 such thatif 0 < x—a <, then |[f(x)—L| < e.
Limit from the Left: Let f(x) be defined over an open interval of the form (b, ¢) where b < ¢. Then,

lim_ f(x) =L

X —da

if for every & > 0, there existsa 6 > 0 such thatif —6 <x—a <0, then |f(x)—L| <e.

Example 2.44

Proving a Statement about a Limit From the Right

Prove that lim+ Vx—4=0.

x—4
Solution
Let € > 0.

Choose & = £2. Since we ultimately want |\/x -4 - 0| < &, we manipulate this inequality to get Vx —4 < ¢

or, equivalently, 0 < x —4 < &2, making 6 = €2 a clear choice. We may also determine J geometrically, as

shown in Figure 2.42.

109 :x/

0+ ¢
d=(2+4)—4
. (;f ( b -
0—¢
\\X —4=¢
x=g+4
Figure 2.42 This graph shows how we find 6 for the proof in

Example 2.44.

Assume 0 < x—4 < 6. Thus, 0 <x—4< 2, Hence, 0 < Vx — 4 < ¢. Finally,

\/x—4—0|<£.

Therefore, lim VYx—4=0.
x— 4t

@ 2.30 Find 6 corresponding to ¢ for a proof that linll_ VI —x=0.
X —
We conclude the process of converting our intuitive ideas of various types of limits to rigorous formal definitions by
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pursuing a formal definition of infinite limits. To have xli_r)na f(x) =400, we want the values of the function f(x)
to get larger and larger as x approaches a. Instead of the requirement that |f(x) — L| < ¢ for arbitrarily small & when
0 < Ix —al < 6 for small enough 6, we want f(x) > M for arbitrarily large positive M when 0 < |x —al < § for small

enough 6. Figure 2.43 illustrates this idea by showing the value of § for successively larger values of M.

y y
| : z
M ; s
! f(x) E f(x)
N .
a X a X
@ ®)

In each graph, & is the smaller of the lengths of the two brown intervals.
Figure 2.43 These graphs plot values of ¢ for M to show that xli_r)na f(x) = +oco0.

Definition

Let f(x) be defined for all x # a in an open interval containing a. Then, we have an infinite limit
Jim f(x) = +o0

if for every M > 0, there exists § > 0 such thatif 0 < |x —al < §, then f(x) > M.

Let f(x) be defined for all x # a in an open interval containing a. Then, we have a negative infinite limit
Jim f(x) = —o0

if for every M > 0, there exists § > 0 such thatif 0 < |x —al < §, then f(x) < —M.



206

2.5 EXERCISES

In the following exercises, write the appropriate & — o
definition for each of the given statements.

176.  lim f(x) =N
177. zli—{nbg(t) =M
178. lim h(x) = L
179. xli_r)na(p(x) =A

The following graph of the function f satisfies
lim2 f(x) =2. In the following exercises, determine a
X =

value of § > O that satisfies each statement.

y
5l

44

= U B R B R

180. If 0 <|x—2|< 4§, then |f(x)—2|< 1.
181. If 0<|x—2| <6, then |f(x)—2|<0.5.

The following graph of the function f satisfies
lim3 f(x) = —1. In the following exercises, determine a
X —

value of § > O that satisfies each statement.

Chapter 2 | Limits

oi'<

182. If 0 <|x—3| <4, then |f(x)+1]<1.
183. If 0 <|x—3|< 4, then |f(x)+ 1] <2.

The following graph of the function f satisfies
lim3 f(x) = 2. In the following exercises, for each value
X —

of &, find a value of & > 0 such that the precise definition
of limit holds true.

o<

g g g

184. £=1.5
185. £=3

[T] In the following exercises, use a graphing calculator to
find a number & such that the statements hold true.

186. |sin (2x) — %| < 0.1, whenever |x - %| <8
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187. |[Vx—4-2|<0.1, whenever|x—8| <&

In the following exercises, use the precise definition of
limit to prove the given limits.

188. lim (5x+8) =18
x—2

2
189. lim —39 =6

x—->3X—
2
190. lim 2X-=3x=2 _ 5
x—=2 x—2

191. limx*=0
192. lim (x%2+2x)=8
X — 2

In the following exercises, use the precise definition of
limit to prove the given one-sided limits.

193. linsl_ V5—x=0

X —

194.
- 8x—3, ifx<0
x1_1>r8+f(X) = -2, where f(x) = {4)6 -2, ifx>0

Sx—2, ifx <1
195. i =3, wh = ! .
9. lim_f(x)=3, where f(x) {7x—1, ifx>1

In the following exercises, use the precise definition of
limit to prove the given infinite limits.

196. lim L = oo

x = 0y2

197.  lim %:oo
x=-l(x+ 1)

198. lim ——1 = _

x—2

x—-272

199. An engineer is using a machine to cut a flat square
of Aerogel of area 144 cm?. If there is a maximum error
tolerance in the area of 8 cm?, how accurately must the
engineer cut on the side, assuming all sides have the same
length? How do these numbers relate to o, ¢, a, and L?

200. Use the precise definition of limit to prove that the

following limit does not exist: lim =1
x—=>1Xx— 1

207

201. Using precise definitions of limits, prove that
limo f(x) does not exist, given that f(x) is the ceiling
X —

function. (Hint: Try any 6 < 1.)
202. Using precise definitions of limits, prove that

1if x is rational

li d t exist: ={ LT .
x1—1>n()f(x) oes not exist: f(x) 0if xis irrational

(Hint: Think about how you can always choose a rational

number 0 < r < d, but [f(r)—0=1.)

203. Using precise definitions of limits, determine
x if x is rational (Hint: Break

lim () for £ ={

0if xis irrational’
into two cases, x rational and x irrational.)

204. Using the function from the previous exercise, use
the precise definition of limits to show that xli_r)na f(x) does

not exist for a # 0.

For the following exercises, suppose that Xlgna f(x)=L
and xli_r)nag(x) = M both exist. Use the precise definition

of limits to prove the following limit laws:
205. xli_r)na(f(x) +gX)=L+M
206. xli_r)na[c f(x)]=cL for any real constant ¢ (Hint:

Consider two cases: ¢ =0 and ¢ # 0.)

207. xli_r)na[f(x)g(x)] =LM. (Hint: |f(x)g(x) — LM|=

[f()g(x) — fOM + f(M — LM| < |f(0)llg(x) — M| + IMI|f(x) — LI.)
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CHAPTER 2 REVIEW

KEY TERMS

average velocity the change in an object’s position divided by the length of a time period; the average velocity of an
object over a time interval [f, a] (if t<a or [a,t] if t>a), with a position given by s(f), that is

_ s() —s(a)
Vave—%

constant multiple law for limits the limit law xli—I>naC f(x)=c- xli—I)na f(x)=cL

continuity at a point A function f(x) is continuous at a point a if and only if the following three conditions are
satisfied: (1) f(a) is defined, (2) xli_l)na f(x) exists, and (3) xli_r)na f(x) = f(a)

continuity from the left A function is continuous from the left at b if linb1_ fx) = f(b)
X =

continuity from the right A function is continuous from the right at a if lim+ fx) = f(a)
X —da

continuity over an interval a function that can be traced with a pencil without lifting the pencil; a function is
continuous over an open interval if it is continuous at every point in the interval; a function f(x) is continuous over a

closed interval of the form [a, b] if it is continuous at every point in (a, b), and it is continuous from the right at a
and from the left at b

difference law for limits the limit law xli_l)na(f(x) —g)= xli—1>nu f(x)— xli_r)nag(x) =L-M

differential calculus the field of calculus concerned with the study of derivatives and their applications

discontinuity at a point A function is discontinuous at a point or has a discontinuity at a point if it is not continuous at
the point

epsilon-delta definition of the limit lim f(x) =L if for every &>0, there exists a §>0 such that if

O0<|x—al<é, then |f(x)—L|<e¢

infinite discontinuity An infinite discontinuity occurs at a point a if lim_ f(x) = +oc0 or 1im+ f(x) = %00
r—=a x—>a

infinite limit A function has an infinite limit at a point a if it either increases or decreases without bound as it approaches
a

instantaneous velocity The instantaneous velocity of an object with a position function that is given by s(¢) is the
value that the average velocities on intervals of the form [z, a] and [a, ] approach as the values of t move closer to
a, provided such a value exists

integral calculus the study of integrals and their applications

Intermediate Value Theorem Let f be continuous over a closed bounded interval [a, b]; if z is any real number
between f(a) and f(b), then there is a number c in [a, b] satisfying f(c) =z

intuitive definition of the limit If all values of the function f(x) approach the real number L as the values of x( # a)
approach a, f(x) approaches L

jump discontinuity A jump discontinuity occurs at a point a if lim_ f(x) and lim+ f(x) both exist, but
xr—a x—a

lim_ f(x) # lim+ fx)

X—=a

limit the process of letting x or t approach a in an expression; the limit of a function f(x) as x approaches a is the value
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that f(x) approaches as x approaches a

limit laws the individual properties of limits; for each of the individual laws, let f(x) and g(x) be defined for all x # a

over some open interval containing a; assume that L and M are real numbers so that Xli_r)na f(x)=L and

xli_r)nag(x) = M, let c be a constant

multivariable calculus the study of the calculus of functions of two or more variables
one-sided limit A one-sided limit of a function is a limit taken from either the left or the right

power law for limits the limit law xli_r)na( F0))" (th f (x)) = L" for every positive integer n

product law for limits the limit law xli_r)na(f(x) -gx) = xlgna f(x) ~x1g11ag(x) =L-M

quotient law for limits f&) lim f(x) L

the limit law 11m r=d

g0 = Tim g ~ w1 O MFO

removable discontinuity A removable discontinuity occurs at a point a if f(x) is discontinuous at a, but xli_r)na f(x)

exists

root law for limits imi im Y =7 =" i e
the limit law xh_r)na\/ flx) = q/xh_r)na f(x) =VL forall Lif nis odd and for L > 0 if n is even

secant A secant line to a function f(x) at a is a line through the point (a, f(a)) and another point on the function; the

S - fl@ (X) f (@

slope of the secant line is given by mge. =

squeeze theorem states that if f(x) < g(x) <h(x) for all x#a over an open interval containing a and

xli_r)na f(x)y=L= xli_r)nah(x) where L is a real number, then xli_r)nag(x) =
sum law for limits The limit law xlgna(f(x) +g(x) = Jim f(x) + lim g(x) = L+ M

tangent A tangent line to the graph of a function at a point (@, f(a)) is the line that secant lines through (a, f(a))

approach as they are taken through points on the function with x-values that approach a; the slope of the tangent line
to a graph at a measures the rate of change of the function at a

triangle inequality If a and b are any real numbers, then |a + b| < |al + ||

vertical asymptote A function has a vertical asymptote at x = a if the limit as x approaches a from the right or left is
infinite

KEY EQUATIONS

¢ Slope of a Secant Line

[0 - @)

Mgec =
* Average Velocity over Interval [a, t]
_ 35 —sa)

Vave = — =g

¢ Intuitive Definition of the Limit

xli—rpaf () =

¢ Two Important Limits
limx=a limc=c
X —>a X —a

¢ One-Sided Limits
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lim_f(x)=L lim f(x)=L
xX—a x—at
¢ Infinite Limits from the Left
lim_ f(x) = +o0 lim_ f(x) = —
X—=a X—=a

¢ Infinite Limits from the Right
lim f(x) =400 lim f(x)=—o0
X = a+ X — (/l+
¢ Two-Sided Infinite Limits
xli_r)nuf(x) =+4o00: lim_f(x) =+oco and lim+ f(x) =400
X —=da

X—=da
lim f(x) = —c0 : lim_ f(x) = —c0 and lim f(x) = —oco
xr—da X —a x—at

¢ Basic Limit Results
limx=a limc=c
X—=a X—a

¢ Important Limits
lim sinf =0
-0

lim cosfd =1
0-0

li sinc9=1
020 0

lim L=co0s0 _
0—-0

KEY CONCEPTS

2.1 A Preview of Calculus

 Differential calculus arose from trying to solve the problem of determining the slope of a line tangent to a curve at a
point. The slope of the tangent line indicates the rate of change of the function, also called the derivative. Calculating
a derivative requires finding a limit.

¢ Integral calculus arose from trying to solve the problem of finding the area of a region between the graph of a
function and the x-axis. We can approximate the area by dividing it into thin rectangles and summing the areas of
these rectangles. This summation leads to the value of a function called the integral. The integral is also calculated
by finding a limit and, in fact, is related to the derivative of a function.

¢ Multivariable calculus enables us to solve problems in three-dimensional space, including determining motion in
space and finding volumes of solids.

2.2 The Limit of a Function

* A table of values or graph may be used to estimate a limit.

 If the limit of a function at a point does not exist, it is still possible that the limits from the left and right at that point
may exist.

¢ If the limits of a function from the left and right exist and are equal, then the limit of the function is that common
value.

¢ We may use limits to describe infinite behavior of a function at a point.

2.3 The Limit Laws

¢ The limit laws allow us to evaluate limits of functions without having to go through step-by-step processes each
time.

* For polynomials and rational functions, xlgna f(x) = f(a).
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You can evaluate the limit of a function by factoring and canceling, by multiplying by a conjugate, or by simplifying
a complex fraction.

The squeeze theorem allows you to find the limit of a function if the function is always greater than one function
and less than another function with limits that are known.

2.4 Continuity

For a function to be continuous at a point, it must be defined at that point, its limit must exist at the point, and the
value of the function at that point must equal the value of the limit at that point.

Discontinuities may be classified as removable, jump, or infinite.

A function is continuous over an open interval if it is continuous at every point in the interval. It is continuous over
a closed interval if it is continuous at every point in its interior and is continuous at its endpoints.

The composite function theorem states: If f(x) is continuous at L and xli_l:rlag(x) =L, then
Jim_ fg(0) = f( Jim g()) = £

The Intermediate Value Theorem guarantees that if a function is continuous over a closed interval, then the function
takes on every value between the values at its endpoints.

2.5 The Precise Definition of a Limit

The intuitive notion of a limit may be converted into a rigorous mathematical definition known as the epsilon-delta
definition of the limit.

The epsilon-delta definition may be used to prove statements about limits.

The epsilon-delta definition of a limit may be modified to define one-sided limits.

CHAPTER 2 REVIEW EXERCISES

True or False. In the following exercises, justify your 212. Using the graph, find each limit or explain why the
answer with a proof or a counterexample. limit does not exist.

208. A function has to be continuous at x = a if the

o Im, 70

xli_rpa f(x) exists. b. xli—1>nl S
C. lim+ fx)
209. You can use the quotient rule to evaluate lim % * _> 0
x—0 d.  lim_f(x)
x =2
y
2t
210. If there is a vertical asymptote at x =a for the 3
function f(x), then fis undefined at the point x = a.
24
211. If xli_r)nu f(x) does not exist, then f is undefined at the 1 /0—
point x = a. 75 71 041 1 =2x
-1+ @
— 2 +

In the following exercises, evaluate the limit algebraically
or explain why the limit does not exist.

2
213. lim 2Xx-=3x—=2
x—2 x—2
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214. lim3x2—2x+4
x—-0

3_452
o X0 —=2x°—1
215 IS

216. lim <otx
x = 7/2€08X

2
217.  lim X +25
x—>-5x+5

2
218. limw
x=2  x* -4

2
219, lim £ =1

x—=>1x2 1
2
soxt—1
220 N e

21, lim 4=X

x = 4VX — 2
; 1
2. Jim el

In the following exercises, use the squeeze theorem to
prove the limit.

223. lim0x2 cos(2rx) =0
X —

224, lim xsin(§) =0

225. Determine the domain such that the function
f(x) =Vx —2+ xe* is continuous over its domain.

In the following exercises, determine the value of ¢ such
that the function remains continuous. Draw your resulting
function to ensure it is continuous.

2
+1,x>c
226. (x)={x ’
f 2x, x<c
Vx+1, x> -1
227. f(x)={; *
x“+c,x< -1

In the following exercises, use the precise definition of
limit to prove the limit.
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228. liml(8x +16) =24
X —

229. lim x> =0

X —

230. A ball is thrown into the air and the vertical position
is given by x(¢) = —4.9¢% 4+ 25t + 5. Use the Intermediate

Value Theorem to show that the ball must land on the
ground sometime between 5 sec and 6 sec after the throw.

231. A particle moving along a line has a displacement
according to the function x(¢) = 2—2+ 4, where x is

measured in meters and t is measured in seconds. Find the
average velocity over the time period 7 = [0, 2].

232. From the previous exercises, estimate the
instantaneous velocity at t =2 by checking the average

velocity within # = 0.01 sec.
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