
1 | FUNCTIONS AND
GRAPHS

Figure 1.1 A portion of the San Andreas Fault in California. Major faults like this are the sites of most of the strongest
earthquakes ever recorded. (credit: modification of work by Robb Hannawacker, NPS)
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Introduction
In the past few years, major earthquakes have occurred in several countries around the world. In January 2010, an
earthquake of magnitude 7.3 hit Haiti. A magnitude 9 earthquake shook northeastern Japan in March 2011. In April 2014,
an 8.2-magnitude earthquake struck off the coast of northern Chile. What do these numbers mean? In particular, how
does a magnitude 9 earthquake compare with an earthquake of magnitude 8.2? Or 7.3? Later in this chapter, we show
how logarithmic functions are used to compare the relative intensity of two earthquakes based on the magnitude of each
earthquake (see Example 1.39).

Calculus is the mathematics that describes changes in functions. In this chapter, we review all the functions necessary
to study calculus. We define polynomial, rational, trigonometric, exponential, and logarithmic functions. We review how
to evaluate these functions, and we show the properties of their graphs. We provide examples of equations with terms
involving these functions and illustrate the algebraic techniques necessary to solve them. In short, this chapter provides the
foundation for the material to come. It is essential to be familiar and comfortable with these ideas before proceeding to the
formal introduction of calculus in the next chapter.
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1.1 | Review of Functions

Learning Objectives
1.1.1 Use functional notation to evaluate a function.
1.1.2 Determine the domain and range of a function.
1.1.3 Draw the graph of a function.
1.1.4 Find the zeros of a function.
1.1.5 Recognize a function from a table of values.
1.1.6 Make new functions from two or more given functions.
1.1.7 Describe the symmetry properties of a function.

In this section, we provide a formal definition of a function and examine several ways in which functions are
represented—namely, through tables, formulas, and graphs. We study formal notation and terms related to functions. We
also define composition of functions and symmetry properties. Most of this material will be a review for you, but it serves
as a handy reference to remind you of some of the algebraic techniques useful for working with functions.

Functions
Given two sets and a set with elements that are ordered pairs where is an element of and is an

element of is a relation from to A relation from to defines a relationship between those two sets. A
function is a special type of relation in which each element of the first set is related to exactly one element of the second
set. The element of the first set is called the input; the element of the second set is called the output. Functions are used all
the time in mathematics to describe relationships between two sets. For any function, when we know the input, the output is
determined, so we say that the output is a function of the input. For example, the area of a square is determined by its side
length, so we say that the area (the output) is a function of its side length (the input). The velocity of a ball thrown in the
air can be described as a function of the amount of time the ball is in the air. The cost of mailing a package is a function of
the weight of the package. Since functions have so many uses, it is important to have precise definitions and terminology to
study them.

Definition

A function consists of a set of inputs, a set of outputs, and a rule for assigning each input to exactly one output. The

set of inputs is called the domain of the function. The set of outputs is called the range of the function.

For example, consider the function where the domain is the set of all real numbers and the rule is to square the input.

Then, the input is assigned to the output Since every nonnegative real number has a real-value square root,
every nonnegative number is an element of the range of this function. Since there is no real number with a square that is
negative, the negative real numbers are not elements of the range. We conclude that the range is the set of nonnegative real
numbers.

For a general function with domain we often use to denote the input and to denote the output associated with

When doing so, we refer to as the independent variable and as the dependent variable, because it depends on

Using function notation, we write and we read this equation as equals of For the squaring function

described earlier, we write

The concept of a function can be visualized using Figure 1.2, Figure 1.3, and Figure 1.4.
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Figure 1.2 A function can be visualized as an input/output
device.

Figure 1.3 A function maps every element in the domain to
exactly one element in the range. Although each input can be
sent to only one output, two different inputs can be sent to the
same output.

Figure 1.4 In this case, a graph of a function has a domain

of and a range of The independent variable

is and the dependent variable is

Visit this applet link (http://www.openstax.org/l/grapherrors) to see more about graphs of functions.

We can also visualize a function by plotting points in the coordinate plane where The graph of a function
is the set of all these points. For example, consider the function where the domain is the set and the

rule is In Figure 1.5, we plot a graph of this function.
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Figure 1.5 Here we see a graph of the function with

domain and rule The graph consists

of the points for all in the domain.

Every function has a domain. However, sometimes a function is described by an equation, as in with no

specific domain given. In this case, the domain is taken to be the set of all real numbers for which is a real number.

For example, since any real number can be squared, if no other domain is specified, we consider the domain of

to be the set of all real numbers. On the other hand, the square root function only gives a real output if is

nonnegative. Therefore, the domain of the function is the set of nonnegative real numbers, sometimes called the

natural domain.

For the functions and the domains are sets with an infinite number of elements. Clearly we cannot

list all these elements. When describing a set with an infinite number of elements, it is often helpful to use set-builder or
interval notation. When using set-builder notation to describe a subset of all real numbers, denoted we write

We read this as the set of real numbers such that has some property. For example, if we were interested in the set of
real numbers that are greater than one but less than five, we could denote this set using set-builder notation by writing

A set such as this, which contains all numbers greater than and less than can also be denoted using the interval
notation Therefore,

The numbers and are called the endpoints of this set. If we want to consider the set that includes the endpoints, we
would denote this set by writing

We can use similar notation if we want to include one of the endpoints, but not the other. To denote the set of nonnegative
real numbers, we would use the set-builder notation

The smallest number in this set is zero, but this set does not have a largest number. Using interval notation, we would use
the symbol which refers to positive infinity, and we would write the set as

It is important to note that is not a real number. It is used symbolically here to indicate that this set includes all real
numbers greater than or equal to zero. Similarly, if we wanted to describe the set of all nonpositive numbers, we could write
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1.1

Here, the notation refers to negative infinity, and it indicates that we are including all numbers less than or equal to
zero, no matter how small. The set

refers to the set of all real numbers.

Some functions are defined using different equations for different parts of their domain. These types of functions are known
as piecewise-defined functions. For example, suppose we want to define a function with a domain that is the set of all

real numbers such that for and for We denote this function by writing

When evaluating this function for an input the equation to use depends on whether or For example,
since we use the fact that for and see that On the other hand, for

we use the fact that for and see that

Example 1.1

Evaluating Functions

For the function evaluate

a.

b.

c.

Solution
Substitute the given value for x in the formula for

a.

b.

c.

For evaluate and

Example 1.2

Finding Domain and Range

For each of the following functions, determine the i. domain and ii. range.
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a.

b.

c.

Solution

a. Consider

i. Since is a real number for any real number the domain of is the

interval

ii. Since we know Therefore, the range must be a subset

of To show that every element in this set is in the range, we need to show that for a

given in that set, there is a real number such that Solving this

equation for we see that we need such that

This equation is satisfied as long as there exists a real number such that

Since the square root is well-defined. We conclude that for

and therefore the range is

b. Consider

i. To find the domain of we need the expression Solving this inequality, we

conclude that the domain is

ii. To find the range of we note that since Therefore,

the range of must be a subset of the set To show that every element in this set is

in the range of we need to show that for all in this set, there exists a real number in the

domain such that Let Then, if and only if

Solving this equation for we see that must solve the equation

Since such an could exist. Squaring both sides of this equation, we have

Therefore, we need
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1.2

which implies

We just need to verify that is in the domain of Since the domain of consists of all real

numbers greater than or equal to and

there does exist an in the domain of We conclude that the range of is

c. Consider

i. Since is defined when the denominator is nonzero, the domain is

ii. To find the range of we need to find the values of such that there exists a real number

in the domain with the property that

Solving this equation for we find that

Therefore, as long as there exists a real number in the domain such that

Thus, the range is

Find the domain and range for

Representing Functions
Typically, a function is represented using one or more of the following tools:

• A table

• A graph

• A formula

We can identify a function in each form, but we can also use them together. For instance, we can plot on a graph the values
from a table or create a table from a formula.

Tables
Functions described using a table of values arise frequently in real-world applications. Consider the following simple
example. We can describe temperature on a given day as a function of time of day. Suppose we record the temperature every
hour for a 24-hour period starting at midnight. We let our input variable be the time after midnight, measured in hours,
and the output variable be the temperature hours after midnight, measured in degrees Fahrenheit. We record our data

in Table 1.1.
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Hours after Midnight Temperature Hours after Midnight Temperature

0 58 12 84

1 54 13 85

2 53 14 85

3 52 15 83

4 52 16 82

5 55 17 80

6 60 18 77

7 64 19 74

8 72 20 69

9 75 21 65

10 78 22 60

11 80 23 58

Table 1.1 Temperature as a Function of Time of Day

We can see from the table that temperature is a function of time, and the temperature decreases, then increases, and then
decreases again. However, we cannot get a clear picture of the behavior of the function without graphing it.

Graphs
Given a function described by a table, we can provide a visual picture of the function in the form of a graph. Graphing

the temperatures listed in Table 1.1 can give us a better idea of their fluctuation throughout the day. Figure 1.6 shows the
plot of the temperature function.
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Figure 1.6 The graph of the data from Table 1.1 shows
temperature as a function of time.

From the points plotted on the graph in Figure 1.6, we can visualize the general shape of the graph. It is often useful
to connect the dots in the graph, which represent the data from the table. In this example, although we cannot make any
definitive conclusion regarding what the temperature was at any time for which the temperature was not recorded, given
the number of data points collected and the pattern in these points, it is reasonable to suspect that the temperatures at other
times followed a similar pattern, as we can see in Figure 1.7.

Figure 1.7 Connecting the dots in Figure 1.6 shows the
general pattern of the data.

Algebraic Formulas
Sometimes we are not given the values of a function in table form, rather we are given the values in an explicit formula.
Formulas arise in many applications. For example, the area of a circle of radius is given by the formula
When an object is thrown upward from the ground with an initial velocity ft/s, its height above the ground from the

time it is thrown until it hits the ground is given by the formula When dollars are invested in an

account at an annual interest rate compounded continuously, the amount of money after years is given by the formula
Algebraic formulas are important tools to calculate function values. Often we also represent these functions

visually in graph form.
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Given an algebraic formula for a function the graph of is the set of points where is in the domain of

and is in the range. To graph a function given by a formula, it is helpful to begin by using the formula to create

a table of inputs and outputs. If the domain of consists of an infinite number of values, we cannot list all of them, but

because listing some of the inputs and outputs can be very useful, it is often a good way to begin.

When creating a table of inputs and outputs, we typically check to determine whether zero is an output. Those values of
where are called the zeros of a function. For example, the zeros of are The zeros

determine where the graph of intersects the -axis, which gives us more information about the shape of the graph of

the function. The graph of a function may never intersect the x-axis, or it may intersect multiple (or even infinitely many)
times.

Another point of interest is the -intercept, if it exists. The -intercept is given by

Since a function has exactly one output for each input, the graph of a function can have, at most, one -intercept. If

is in the domain of a function then has exactly one -intercept. If is not in the domain of then has

no -intercept. Similarly, for any real number if is in the domain of there is exactly one output and the

line intersects the graph of exactly once. On the other hand, if is not in the domain of is not defined

and the line does not intersect the graph of This property is summarized in the vertical line test.

Rule: Vertical Line Test

Given a function every vertical line that may be drawn intersects the graph of no more than once. If any vertical

line intersects a set of points more than once, the set of points does not represent a function.

We can use this test to determine whether a set of plotted points represents the graph of a function (Figure 1.8).

Figure 1.8 (a) The set of plotted points represents the graph of
a function because every vertical line intersects the set of points,
at most, once. (b) The set of plotted points does not represent the
graph of a function because some vertical lines intersect the set
of points more than once.

Example 1.3
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Finding Zeros and -Intercepts of a Function

Consider the function

a. Find all zeros of

b. Find the -intercept (if any).

c. Sketch a graph of

Solution
a. To find the zeros, solve We discover that has one zero at

b. The -intercept is given by

c. Given that is a linear function of the form that passes through the points and

we can sketch the graph of (Figure 1.9).

Figure 1.9 The function is a line with

-intercept and -intercept

Example 1.4

Using Zeros and -Intercepts to Sketch a Graph

Consider the function

a. Find all zeros of

b. Find the -intercept (if any).

c. Sketch a graph of

Solution

a. To find the zeros, solve This equation implies Since for all

Chapter 1 | Functions and Graphs 17



1.3

this equation has no solutions, and therefore has no zeros.

b. The -intercept is given by

c. To graph this function, we make a table of values. Since we need we need to choose values
of We choose values that make the square-root function easy to evaluate.

Table 1.2

Making use of the table and knowing that, since the function is a square root, the graph of should be similar to

the graph of we sketch the graph (Figure 1.10).

Figure 1.10 The graph of has a

-intercept but no -intercepts.

Find the zeros of

Example 1.5

Finding the Height of a Free-Falling Object

If a ball is dropped from a height of ft, its height at time is given by the function
where is measured in feet and is measured in seconds. The domain is restricted to the interval where

is the time when the ball is dropped and is the time when the ball hits the ground.

a. Create a table showing the height when Using the data from the
table, determine the domain for this function. That is, find the time when the ball hits the ground.

b. Sketch a graph of
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Solution
a.

Table 1.3
Height as a Function of Time

Since the ball hits the ground when the domain of this function is the interval

b.

Note that for this function and the function graphed in Figure 1.9, the values of are getting

smaller as is getting larger. A function with this property is said to be decreasing. On the other hand, for the function
graphed in Figure 1.10, the values of are getting larger as the values of are getting larger.

A function with this property is said to be increasing. It is important to note, however, that a function can be increasing on
some interval or intervals and decreasing over a different interval or intervals. For example, using our temperature function
in Figure 1.6, we can see that the function is decreasing on the interval increasing on the interval and
then decreasing on the interval We make the idea of a function increasing or decreasing over a particular interval
more precise in the next definition.

Definition

We say that a function is increasing on the interval if for all

We say is strictly increasing on the interval if for all
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We say that a function is decreasing on the interval if for all

We say that a function is strictly decreasing on the interval if for all

For example, the function is increasing on the interval because whenever

On the other hand, the function is decreasing on the interval because whenever

(Figure 1.11).

Figure 1.11 (a) The function is increasing on the interval (b) The

function is decreasing on the interval

Combining Functions
Now that we have reviewed the basic characteristics of functions, we can see what happens to these properties when we
combine functions in different ways, using basic mathematical operations to create new functions. For example, if the cost
for a company to manufacture items is described by the function and the revenue created by the sale of items is
described by the function then the profit on the manufacture and sale of items is defined as
Using the difference between two functions, we created a new function.

Alternatively, we can create a new function by composing two functions. For example, given the functions and

the composite function is defined such that
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1.4

The composite function is defined such that

Note that these two new functions are different from each other.

Combining Functions with Mathematical Operators
To combine functions using mathematical operators, we simply write the functions with the operator and simplify. Given
two functions and we can define four new functions:

Example 1.6

Combining Functions Using Mathematical Operations

Given the functions and find each of the following functions and state its

domain.

a.

b.

c.

d.

Solution

a. The domain of this function is the interval

b. The domain of this function is the interval

c. The domain of this function is the interval

d. The domain of this function is

For and find and state its domain.

Function Composition
When we compose functions, we take a function of a function. For example, suppose the temperature on a given day is
described as a function of time (measured in hours after midnight) as in Table 1.1. Suppose the cost to heat or cool
a building for 1 hour, can be described as a function of the temperature Combining these two functions, we can describe
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the cost of heating or cooling a building as a function of time by evaluating We have defined a new function,
denoted which is defined such that for all in the domain of This new function is called
a composite function. We note that since cost is a function of temperature and temperature is a function of time, it makes
sense to define this new function It does not make sense to consider because temperature is not a
function of cost.

Definition

Consider the function with domain and range and the function with domain and range If is a

subset of then the composite function is the function with domain such that

(1.1)

A composite function can be viewed in two steps. First, the function maps each input in the domain of to

its output in the range of Second, since the range of is a subset of the domain of the output is an

element in the domain of and therefore it is mapped to an output in the range of In Figure 1.12, we see a

visual image of a composite function.

Figure 1.12 For the composite function we have

and

Example 1.7

Compositions of Functions Defined by Formulas

Consider the functions and

a. Find and state its domain and range.

b. Evaluate

c. Find and state its domain and range.

d. Evaluate

Solution
a. We can find the formula for in two different ways. We could write
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Alternatively, we could write

Since for all real numbers the domain of is the set of all real numbers. Since

the range is, at most, the interval To show that the range is this entire

interval, we let and solve this equation for to show that for all in the interval

there exists a real number such that Solving this equation for we see

that which implies that

If is in the interval the expression under the radical is nonnegative, and therefore there exists

a real number such that We conclude that the range of is the interval

b.

c. We can find a formula for in two ways. First, we could write

Alternatively, we could write

The domain of is the set of all real numbers such that To find the range of we need

to find all values for which there exists a real number such that

Solving this equation for we see that we need to satisfy

which simplifies to

Finally, we obtain
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1.5

Since is a real number if and only if the range of is the set

d.

In Example 1.7, we can see that This tells us, in general terms, that the order in which we compose

functions matters.

Let Let Find

Example 1.8

Composition of Functions Defined by Tables

Consider the functions and described by Table 1.4 and Table 1.5.

0 1 2 3 4

0 4 2 4 0 4

Table 1.4

0 2 4

1 0 3 0 5

Table 1.5

a. Evaluate

b. State the domain and range of

c. Evaluate

d. State the domain and range of

Solution
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1.6

a.

b. The domain of is the set Since the range of is the set

the range of is the set

c.

d. The domain of is the set Since the range of is the set

the range of is the set

Example 1.9

Application Involving a Composite Function

A store is advertising a sale of off all merchandise. Caroline has a coupon that entitles her to an additional
off any item, including sale merchandise. If Caroline decides to purchase an item with an original price of

dollars, how much will she end up paying if she applies her coupon to the sale price? Solve this problem by
using a composite function.

Solution
Since the sale price is off the original price, if an item is dollars, its sale price is given by

Since the coupon entitles an individual to off the price of any item, if an item is dollars, the price, after

applying the coupon, is given by Therefore, if the price is originally dollars, its sale price will

be and then its final price after the coupon will be

If items are on sale for off their original price, and a customer has a coupon for an additional
off, what will be the final price for an item that is originally dollars, after applying the coupon to the sale
price?

Symmetry of Functions
The graphs of certain functions have symmetry properties that help us understand the function and the shape of its graph.
For example, consider the function shown in Figure 1.13(a). If we take the part of the curve that

lies to the right of the y-axis and flip it over the y-axis, it lays exactly on top of the curve to the left of the y-axis. In this
case, we say the function has symmetry about the y-axis. On the other hand, consider the function shown

in Figure 1.13(b). If we take the graph and rotate it about the origin, the new graph will look exactly the same. In
this case, we say the function has symmetry about the origin.
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Figure 1.13 (a) A graph that is symmetric about the -axis. (b) A graph that is symmetric

about the origin.

If we are given the graph of a function, it is easy to see whether the graph has one of these symmetry properties. But without
a graph, how can we determine algebraically whether a function has symmetry? Looking at Figure 1.14 again, we see

that since is symmetric about the -axis, if the point is on the graph, the point is on the graph. In other

words, If a function has this property, we say is an even function, which has symmetry about the

y-axis. For example, is even because

In contrast, looking at Figure 1.14 again, if a function is symmetric about the origin, then whenever the point is

on the graph, the point is also on the graph. In other words, If has this property, we say

is an odd function, which has symmetry about the origin. For example, is odd because

Definition

If for all in the domain of then is an even function. An even function is symmetric about the

y-axis.

If for all in the domain of then is an odd function. An odd function is symmetric about the

origin.

Example 1.10

Even and Odd Functions

Determine whether each of the following functions is even, odd, or neither.

a.
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1.7

b.

c.

Solution
To determine whether a function is even or odd, we evaluate and compare it to f(x) and

a. Therefore, is even.

b. Now, Furthermore, noting that

we see that Therefore, is neither even nor odd.

c. Therefore, is odd.

Determine whether is even, odd, or neither.

One symmetric function that arises frequently is the absolute value function, written as The absolute value function is
defined as

(1.2)

Some students describe this function by stating that it “makes everything positive.” By the definition of the absolute value
function, we see that if then and if then However, for
Therefore, it is more accurate to say that for all nonzero inputs, the output is positive, but if the output We
conclude that the range of the absolute value function is In Figure 1.14, we see that the absolute value function

is symmetric about the y-axis and is therefore an even function.

Figure 1.14 The graph of is symmetric about the

-axis.
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Example 1.11

Working with the Absolute Value Function

Find the domain and range of the function

Solution
Since the absolute value function is defined for all real numbers, the domain of this function is Since

for all the function Therefore, the range is, at most, the set

To see that the range is, in fact, this whole set, we need to show that for there exists a real number such

that

A real number satisfies this equation as long as

Since we know and thus the right-hand side of the equation is nonnegative, so it is possible

that there is a solution. Furthermore,

Therefore, we see there are two solutions:

The range of this function is

For the function find the domain and range.
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1.1 EXERCISES
For the following exercises, (a) determine the domain and
the range of each relation, and (b) state whether the relation
is a function.

1.

−3 9 1 1

−2 4 2 4

−1 1 3 9

0 0

2.

−3 −2 1 1

−2 −8 2 8

−1 −1 3 −2

0 0

3.

1 −3 1 1

2 −2 2 2

3 −1 3 3

0 0

4.

1 1 5 1

2 1 6 1

3 1 7 1

4 1

5.

3 3 15 1

5 2 21 2

8 1 33 3

10 0

6.

−7 11 1 −2

−2 5 3 4

−2 1 6 11

0 −1

For the following exercises, find the values for each
function, if they exist, then simplify.

a. b. c. d. e. f.

7.
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8.

9.

10.

11.

12.

13.

For the following exercises, find the domain, range, and all
zeros/intercepts, if any, of the functions.

14.

15.

16.

17.

18.

19.

20.

21.

For the following exercises, set up a table to sketch the
graph of each function using the following values:

22.

−3 10 1 2

−2 5 2 5

−1 2 3 10

0 1

23.

−3 −15 1 −3

−2 −12 2 0

−1 −9 3 3

0 −6

24.

−3 1

−2 0 2 2

−1 3

0 1

25.

−3 6 1 2

−2 4 2 4

−1 2 3 6

0 0

30 Chapter 1 | Functions and Graphs

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



26.

−3 −9 1 −1

−2 −4 2 −4

−1 −1 3 −9

0 0

27.

−3 −27 1 1

−2 −8 2 8

−1 −1 3 27

0 0

For the following exercises, use the vertical line test to
determine whether each of the given graphs represents a
function. Assume that a graph continues at both ends if
it extends beyond the given grid. If the graph represents a
function, then determine the following for each graph:

a. Domain and range

b. -intercept, if any (estimate where necessary)

c. -Intercept, if any (estimate where necessary)

d. The intervals for which the function is increasing

e. The intervals for which the function is decreasing

f. The intervals for which the function is constant

g. Symmetry about any axis and/or the origin

h. Whether the function is even, odd, or neither

28.

29.

30.
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31.

32.

33.

34.

35.

For the following exercises, for each pair of functions, find
a. b. c. d. Determine the domain

of each of these new functions.

36.

37.

38.

39.

40.

41.

For the following exercises, for each pair of functions, find

32 Chapter 1 | Functions and Graphs

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



a. and b. Simplify the results. Find the

domain of each of the results.

42.

43.

44.

45.

46.

47.

48.

49. The table below lists the NBA championship winners
for the years 2001 to 2012.

Year Winner

2001 LA Lakers

2002 LA Lakers

2003 San Antonio Spurs

2004 Detroit Pistons

2005 San Antonio Spurs

2006 Miami Heat

2007 San Antonio Spurs

2008 Boston Celtics

2009 LA Lakers

2010 LA Lakers

2011 Dallas Mavericks

2012 Miami Heat

a. Consider the relation in which the domain values
are the years 2001 to 2012 and the range is the
corresponding winner. Is this relation a function?
Explain why or why not.

b. Consider the relation where the domain values are
the winners and the range is the corresponding
years. Is this relation a function? Explain why or
why not.

50. [T] The area of a square depends on the length of
the side

a. Write a function for the area of a square.
b. Find and interpret
c. Find the exact and the two-significant-digit

approximation to the length of the sides of a square
with area 56 square units.
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51. [T] The volume of a cube depends on the length of the
sides

a. Write a function for the volume of a cube.
b. Find and interpret

52. [T] A rental car company rents cars for a flat fee of
$20 and an hourly charge of $10.25. Therefore, the total
cost to rent a car is a function of the hours the car is
rented plus the flat fee.

a. Write the formula for the function that models this
situation.

b. Find the total cost to rent a car for 2 days and 7
hours.

c. Determine how long the car was rented if the bill is
$432.73.

53. [T] A vehicle has a 20-gal tank and gets 15 mpg.
The number of miles N that can be driven depends on the
amount of gas x in the tank.

a. Write a formula that models this situation.
b. Determine the number of miles the vehicle can

travel on (i) a full tank of gas and (ii) 3/4 of a tank
of gas.

c. Determine the domain and range of the function.
d. Determine how many times the driver had to stop

for gas if she has driven a total of 578 mi.

54. [T] The volume V of a sphere depends on the length of
its radius as Because Earth is not a perfect
sphere, we can use the mean radius when measuring from
the center to its surface. The mean radius is the average
distance from the physical center to the surface, based on
a large number of samples. Find the volume of Earth with
mean radius m.

55. [T] A certain bacterium grows in culture in a circular
region. The radius of the circle, measured in centimeters,
is given by where t is time

measured in hours since a circle of a 1-cm radius of the
bacterium was put into the culture.

a. Express the area of the bacteria as a function of
time.

b. Find the exact and approximate area of the bacterial
culture in 3 hours.

c. Express the circumference of the bacteria as a
function of time.

d. Find the exact and approximate circumference of
the bacteria in 3 hours.

56. [T] An American tourist visits Paris and must convert
U.S. dollars to Euros, which can be done using the function

where x is the number of U.S. dollars and
is the equivalent number of Euros. Since conversion

rates fluctuate, when the tourist returns to the United States
2 weeks later, the conversion from Euros to U.S. dollars
is where x is the number of Euros and

is the equivalent number of U.S. dollars.
a. Find the composite function that converts directly

from U.S. dollars to U.S. dollars via Euros. Did this
tourist lose value in the conversion process?

b. Use (a) to determine how many U.S. dollars the
tourist would get back at the end of her trip if she
converted an extra $200 when she arrived in Paris.

57. [T] The manager at a skateboard shop pays his
workers a monthly salary S of $750 plus a commission of
$8.50 for each skateboard they sell.

a. Write a function that models a worker’s

monthly salary based on the number of skateboards
x he or she sells.

b. Find the approximate monthly salary when a
worker sells 25, 40, or 55 skateboards.

c. Use the INTERSECT feature on a graphing
calculator to determine the number of skateboards
that must be sold for a worker to earn a monthly
income of $1400. (Hint: Find the intersection of the
function and the line
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58. [T] Use a graphing calculator to graph the half-circle

Then, use the INTERCEPT feature

to find the value of both the - and -intercepts.
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1.2 | Basic Classes of Functions

Learning Objectives
1.2.1 Calculate the slope of a linear function and interpret its meaning.
1.2.2 Recognize the degree of a polynomial.
1.2.3 Find the roots of a quadratic polynomial.
1.2.4 Describe the graphs of basic odd and even polynomial functions.
1.2.5 Identify a rational function.
1.2.6 Describe the graphs of power and root functions.
1.2.7 Explain the difference between algebraic and transcendental functions.
1.2.8 Graph a piecewise-defined function.
1.2.9 Sketch the graph of a function that has been shifted, stretched, or reflected from its initial
graph position.

We have studied the general characteristics of functions, so now let’s examine some specific classes of functions. We
begin by reviewing the basic properties of linear and quadratic functions, and then generalize to include higher-degree
polynomials. By combining root functions with polynomials, we can define general algebraic functions and distinguish
them from the transcendental functions we examine later in this chapter. We finish the section with examples of piecewise-
defined functions and take a look at how to sketch the graph of a function that has been shifted, stretched, or reflected from
its initial form.

Linear Functions and Slope
The easiest type of function to consider is a linear function. Linear functions have the form where and

are constants. In Figure 1.15, we see examples of linear functions when is positive, negative, and zero. Note that if
the graph of the line rises as increases. In other words, is increasing on If

the graph of the line falls as increases. In this case, is decreasing on If the line is

horizontal.

Figure 1.15 These linear functions are increasing or
decreasing on and one function is a horizontal line.

As suggested by Figure 1.15, the graph of any linear function is a line. One of the distinguishing features of a line is its
slope. The slope is the change in for each unit change in The slope measures both the steepness and the direction of

a line. If the slope is positive, the line points upward when moving from left to right. If the slope is negative, the line points
downward when moving from left to right. If the slope is zero, the line is horizontal. To calculate the slope of a line, we
need to determine the ratio of the change in versus the change in To do so, we choose any two points and

on the line and calculate In Figure 1.16, we see this ratio is independent of the points chosen.
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Figure 1.16 For any linear function, the slope
is independent of the choice of points

and on the line.

Definition

Consider line passing through points and Let and denote the

changes in and respectively. The slope of the line is

(1.3)

We now examine the relationship between slope and the formula for a linear function. Consider the linear function given
by the formula As discussed earlier, we know the graph of a linear function is given by a line. We

can use our definition of slope to calculate the slope of this line. As shown, we can determine the slope by calculating
for any points and on the line. Evaluating the function at we see

that is a point on this line. Evaluating this function at we see that is also a point on this line.
Therefore, the slope of this line is

We have shown that the coefficient is the slope of the line. We can conclude that the formula describes

a line with slope Furthermore, because this line intersects the -axis at the point we see that the -intercept

for this linear function is We conclude that the formula tells us the slope, and the -intercept,

for this line. Since we often use the symbol to denote the slope of a line, we can write

to denote the slope-intercept form of a linear function.

Sometimes it is convenient to express a linear function in different ways. For example, suppose the graph of a linear function
passes through the point and the slope of the line is Since any other point on the graph of must

satisfy the equation
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this linear function can be expressed by writing

We call this equation the point-slope equation for that linear function.

Since every nonvertical line is the graph of a linear function, the points on a nonvertical line can be described using the
slope-intercept or point-slope equations. However, a vertical line does not represent the graph of a function and cannot be
expressed in either of these forms. Instead, a vertical line is described by the equation for some constant Since
neither the slope-intercept form nor the point-slope form allows for vertical lines, we use the notation

where are both not zero, to denote the standard form of a line.

Definition

Consider a line passing through the point with slope The equation

(1.4)

is the point-slope equation for that line.

Consider a line with slope and -intercept The equation

(1.5)

is an equation for that line in slope-intercept form.

The standard form of a line is given by the equation

(1.6)

where and are both not zero. This form is more general because it allows for a vertical line,

Example 1.12

Finding the Slope and Equations of Lines

Consider the line passing through the points and as shown in Figure 1.17.
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1.9

Figure 1.17 Finding the equation of a linear function with a graph that is a line between
two given points.

a. Find the slope of the line.

b. Find an equation for this linear function in point-slope form.

c. Find an equation for this linear function in slope-intercept form.

Solution
a. The slope of the line is

b. To find an equation for the linear function in point-slope form, use the slope and choose any
point on the line. If we choose the point we get the equation

c. To find an equation for the linear function in slope-intercept form, solve the equation in part b. for

When we do this, we get the equation

Consider the line passing through points and Find the slope of the line.

Find an equation of that line in point-slope form. Find an equation of that line in slope-intercept form.

Example 1.13

A Linear Distance Function

Jessica leaves her house at 5:50 a.m. and goes for a 9-mile run. She returns to her house at 7:08 a.m. Answer the
following questions, assuming Jessica runs at a constant pace.
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a. Describe the distance (in miles) Jessica runs as a linear function of her run time (in minutes).

b. Sketch a graph of

c. Interpret the meaning of the slope.

Solution
a. At time Jessica is at her house, so At time minutes, Jessica has finished

running mi, so The slope of the linear function is

The -intercept is so the equation for this linear function is

b. To graph use the fact that the graph passes through the origin and has slope

c. The slope describes the distance (in miles) Jessica runs per minute, or her average
velocity.

Polynomials
A linear function is a special type of a more general class of functions: polynomials. A polynomial function is any function
that can be written in the form

(1.7)

for some integer and constants where In the case when we allow for

if the function is called the zero function. The value is called the degree of the polynomial; the

constant is called the leading coefficient. A linear function of the form is a polynomial of degree 1

if and degree 0 if A polynomial of degree 0 is also called a constant function. A polynomial function

of degree 2 is called a quadratic function. In particular, a quadratic function has the form where

A polynomial function of degree is called a cubic function.

Power Functions

Some polynomial functions are power functions. A power function is any function of the form where and

are any real numbers. The exponent in a power function can be any real number, but here we consider the case when the
exponent is a positive integer. (We consider other cases later.) If the exponent is a positive integer, then is a

polynomial. If is even, then is an even function because if is even. If is odd,

then is an odd function because if is odd (Figure 1.18).
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Figure 1.18 (a) For any even integer is an even function. (b) For any odd

integer is an odd function.

Behavior at Infinity
To determine the behavior of a function as the inputs approach infinity, we look at the values as the inputs,

become larger. For some functions, the values of approach a finite number. For example, for the function

the values become closer and closer to zero for all values of as they get larger and larger. For this

function, we say approaches two as goes to infinity,” and we write as The line is a

horizontal asymptote for the function because the graph of the function gets closer to the line as gets

larger.

For other functions, the values may not approach a finite number but instead may become larger for all values of

as they get larger. In that case, we say approaches infinity as approaches infinity,” and we write as

For example, for the function the outputs become larger as the inputs get larger. We can

conclude that the function approaches infinity as approaches infinity, and we write as

The behavior as and the meaning of as or can be defined similarly. We can

describe what happens to the values of as and as as the end behavior of the function.

To understand the end behavior for polynomial functions, we can focus on quadratic and cubic functions. The behavior for
higher-degree polynomials can be analyzed similarly. Consider a quadratic function If the

values as If the values as Since the graph of a quadratic function

is a parabola, the parabola opens upward if the parabola opens downward if (See Figure 1.19(a).)

Now consider a cubic function If then as and

as If then as and as As we can see from both of these

graphs, the leading term of the polynomial determines the end behavior. (See Figure 1.19(b).)
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Figure 1.19 (a) For a quadratic function, if the leading coefficient the parabola opens

upward. If the parabola opens downward. (b) For a cubic function if the leading

coefficient the values as and the values as

If the leading coefficient the opposite is true.

Zeros of Polynomial Functions
Another characteristic of the graph of a polynomial function is where it intersects the -axis. To determine where a function

intersects the -axis, we need to solve the equation for x. In the case of the linear function

the -intercept is given by solving the equation In this case, we see that the -intercept is given by
In the case of a quadratic function, finding the -intercept(s) requires finding the zeros of a quadratic equation:

In some cases, it is easy to factor the polynomial to find the zeros. If not, we make use
of the quadratic formula.

Rule: The Quadratic Formula

Consider the quadratic equation

where The solutions of this equation are given by the quadratic formula

(1.8)

If the discriminant this formula tells us there are two real numbers that satisfy the quadratic equation.

If this formula tells us there is only one solution, and it is a real number. If no real
numbers satisfy the quadratic equation.

In the case of higher-degree polynomials, it may be more complicated to determine where the graph intersects the -axis.
In some instances, it is possible to find the -intercepts by factoring the polynomial to find its zeros. In other cases, it is
impossible to calculate the exact values of the -intercepts. However, as we see later in the text, in cases such as this, we
can use analytical tools to approximate (to a very high degree) where the -intercepts are located. Here we focus on the
graphs of polynomials for which we can calculate their zeros explicitly.

42 Chapter 1 | Functions and Graphs

This OpenStax book is available for free at http://cnx.org/content/col11964/1.12



Example 1.14

Graphing Polynomial Functions

For the following functions a. and b., i. describe the behavior of as ii. find all zeros of and

iii. sketch a graph of

a.

b.

Solution

a. The function is a quadratic function.

i. Because

ii. To find the zeros of use the quadratic formula. The zeros are

iii. To sketch the graph of use the information from your previous answers and combine it with

the fact that the graph is a parabola opening downward.

b. The function is a cubic function.

i. Because As

ii. To find the zeros of we need to factor the polynomial. First, when we factor out of all the

terms, we find

Then, when we factor the quadratic function we find
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Therefore, the zeros of are

iii. Combining the results from parts i. and ii., draw a rough sketch of

Consider the quadratic function Find the zeros of Does the parabola open

upward or downward?

Mathematical Models
A large variety of real-world situations can be described using mathematical models. A mathematical model is a method of
simulating real-life situations with mathematical equations. Physicists, engineers, economists, and other researchers develop
models by combining observation with quantitative data to develop equations, functions, graphs, and other mathematical
tools to describe the behavior of various systems accurately. Models are useful because they help predict future outcomes.
Examples of mathematical models include the study of population dynamics, investigations of weather patterns, and
predictions of product sales.

As an example, let’s consider a mathematical model that a company could use to describe its revenue for the sale of a
particular item. The amount of revenue a company receives for the sale of items sold at a price of dollars per item

is described by the equation The company is interested in how the sales change as the price of the item changes.

Suppose the data in Table 1.6 show the number of units a company sells as a function of the price per item.
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Table 1.6 Number of Units Sold (in Thousands) as a
Function of Price per Unit (in Dollars)

In Figure 1.20, we see the graph the number of units sold (in thousands) as a function of price (in dollars). We note from
the shape of the graph that the number of units sold is likely a linear function of price per item, and the data can be closely
approximated by the linear function for where predicts the number of units sold in

thousands. Using this linear function, the revenue (in thousands of dollars) can be estimated by the quadratic function

for In Example 1.15, we use this quadratic function to predict the amount of revenue the company receives

depending on the price the company charges per item. Note that we cannot conclude definitively the actual number of units
sold for values of for which no data are collected. However, given the other data values and the graph shown, it seems

reasonable that the number of units sold (in thousands) if the price charged is dollars may be close to the values predicted

by the linear function

Figure 1.20 The data collected for the number of items sold as a function of
price is roughly linear. We use the linear function to estimate

this function.

Example 1.15
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Maximizing Revenue

A company is interested in predicting the amount of revenue it will receive depending on the price it charges for a
particular item. Using the data from Table 1.6, the company arrives at the following quadratic function to model
revenue (in thousands of dollars) as a function of price per item

for

a. Predict the revenue if the company sells the item at a price of and

b. Find the zeros of this function and interpret the meaning of the zeros.

c. Sketch a graph of

d. Use the graph to determine the value of that maximizes revenue. Find the maximum revenue.

Solution
a. Evaluating the revenue function at and we can conclude that

b. The zeros of this function can be found by solving the equation When we factor

the quadratic expression, we get The solutions to this equation are given by

For these values of the revenue is zero. When the revenue is zero because the

company is giving away its merchandise for free. When the revenue is zero because the price

is too high, and no one will buy any items.

c. Knowing the fact that the function is quadratic, we also know the graph is a parabola. Since the
leading coefficient is negative, the parabola opens downward. One property of parabolas is that they are
symmetric about the axis, so since the zeros are at and the parabola must be symmetric

about the line halfway between them, or
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d. The function is a parabola with zeros at and and it is symmetric about the line

so the maximum revenue occurs at a price of per item. At that price, the revenue

is

Algebraic Functions
By allowing for quotients and fractional powers in polynomial functions, we create a larger class of functions. An algebraic
function is one that involves addition, subtraction, multiplication, division, rational powers, and roots. Two types of
algebraic functions are rational functions and root functions.

Just as rational numbers are quotients of integers, rational functions are quotients of polynomials. In particular, a rational
function is any function of the form where and are polynomials. For example,

are rational functions. A root function is a power function of the form where is a positive integer greater

than one. For example, is the square-root function and is the cube-root function. By

allowing for compositions of root functions and rational functions, we can create other algebraic functions. For example,

is an algebraic function.
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Example 1.16

Finding Domain and Range for Algebraic Functions

For each of the following functions, find the domain and range.

a.

b. To find the domain of , we need . Or, Or , the solution to which is

. Therefore, the domain is . If , then .

Therefore, and the range of is .

Solution
a. It is not possible to divide by zero, so the domain is the set of real numbers such that To

find the range, we need to find the values for which there exists a real number such that

When we multiply both sides of this equation by we see that must satisfy the equation

From this equation, we can see that must satisfy

If this equation has no solution. On the other hand, as long as

satisfies this equation. We can conclude that the range of is

b. To find the domain of we need When we factor, we write

This inequality holds if and only if both terms are positive or both terms
are negative. For both terms to be positive, we need to find such that

These two inequalities reduce to and Therefore, the set must be part
of the domain. For both terms to be negative, we need

These two inequalities also reduce to and There are no values of that satisfy both of
these inequalities. Thus, we can conclude the domain of this function is

If then Therefore, and the range of is
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1.11 Find the domain and range for the function

The root functions have defining characteristics depending on whether is odd or even. For all even integers

the domain of is the interval For all odd integers the domain of is

the set of all real numbers. Since for odd integers is an odd function if is odd. See the

graphs of root functions for different values of in Figure 1.21.

Figure 1.21 (a) If is even, the domain of is (b) If is odd, the domain of is

and the function is an odd function.

Example 1.17

Finding Domains for Algebraic Functions

For each of the following functions, determine the domain of the function.

a.

b.

c.

d.

Solution

a. You cannot divide by zero, so the domain is the set of values such that Therefore, the
domain is

b. You need to determine the values of for which the denominator is zero. Since for all real
numbers the denominator is never zero. Therefore, the domain is

c. Since the square root of a negative number is not a real number, the domain is the set of values for

Chapter 1 | Functions and Graphs 49



1.12

1.13

which Therefore, the domain is

d. The cube root is defined for all real numbers, so the domain is the interval

Find the domain for each of the following functions: and

Transcendental Functions
Thus far, we have discussed algebraic functions. Some functions, however, cannot be described by basic algebraic
operations. These functions are known as transcendental functions because they are said to “transcend,” or go beyond,
algebra. The most common transcendental functions are trigonometric, exponential, and logarithmic functions. A
trigonometric function relates the ratios of two sides of a right triangle. They are

(We discuss trigonometric functions later in the chapter.) An exponential function is a function of the form

where the base A logarithmic function is a function of the form for some constant

where if and only if (We also discuss exponential and logarithmic functions later in

the chapter.)

Example 1.18

Classifying Algebraic and Transcendental Functions

Classify each of the following functions, a. through c., as algebraic or transcendental.

a.

b.

c.

Solution
a. Since this function involves basic algebraic operations only, it is an algebraic function.

b. This function cannot be written as a formula that involves only basic algebraic operations, so it is
transcendental. (Note that algebraic functions can only have powers that are rational numbers.)

c. As in part b., this function cannot be written using a formula involving basic algebraic operations only;
therefore, this function is transcendental.

Is an algebraic or a transcendental function?

Piecewise-Defined Functions
Sometimes a function is defined by different formulas on different parts of its domain. A function with this property is
known as a piecewise-defined function. The absolute value function is an example of a piecewise-defined function because
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the formula changes with the sign of

Other piecewise-defined functions may be represented by completely different formulas, depending on the part of the
domain in which a point falls. To graph a piecewise-defined function, we graph each part of the function in its respective
domain, on the same coordinate system. If the formula for a function is different for and we need to pay
special attention to what happens at when we graph the function. Sometimes the graph needs to include an open or
closed circle to indicate the value of the function at We examine this in the next example.

Example 1.19

Graphing a Piecewise-Defined Function

Sketch a graph of the following piecewise-defined function:

Solution

Graph the linear function on the interval and graph the quadratic function

on the interval Since the value of the function at is given by the formula we

see that To indicate this on the graph, we draw a closed circle at the point The value of the

function is given by for all but not at To indicate this on the graph, we draw an

open circle at

Figure 1.22 This piecewise-defined function is linear for
and quadratic for

Sketch a graph of the function
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Example 1.20

Parking Fees Described by a Piecewise-Defined Function

In a big city, drivers are charged variable rates for parking in a parking garage. They are charged $10 for the first
hour or any part of the first hour and an additional $2 for each hour or part thereof up to a maximum of $30 for
the day. The parking garage is open from 6 a.m. to 12 midnight.

a. Write a piecewise-defined function that describes the cost to park in the parking garage as a function
of hours parked

b. Sketch a graph of this function

Solution
a. Since the parking garage is open 18 hours each day, the domain for this function is The

cost to park a car at this parking garage can be described piecewise by the function

b. The graph of the function consists of several horizontal line segments.

The cost of mailing a letter is a function of the weight of the letter. Suppose the cost of mailing a letter is
for the first ounce and for each additional ounce. Write a piecewise-defined function describing the

cost as a function of the weight for where is measured in cents and is measured in
ounces.

Transformations of Functions
We have seen several cases in which we have added, subtracted, or multiplied constants to form variations of simple
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functions. In the previous example, for instance, we subtracted 2 from the argument of the function to get the

function This subtraction represents a shift of the function two units to the right. A shift,

horizontally or vertically, is a type of transformation of a function. Other transformations include horizontal and vertical
scalings, and reflections about the axes.

A vertical shift of a function occurs if we add or subtract the same constant to each output For the graph of

is a shift of the graph of up units, whereas the graph of is a shift of the graph of down

units. For example, the graph of the function is the graph of shifted up units; the graph of the

function is the graph of shifted down units (Figure 1.23).

Figure 1.23 (a) For the graph of is a vertical shift up units of

the graph of (b) For the graph of is a vertical shift down

units of the graph of

A horizontal shift of a function occurs if we add or subtract the same constant to each input For the graph of
is a shift of the graph of to the left units; the graph of is a shift of the graph of to the

right units. Why does the graph shift left when adding a constant and shift right when subtracting a constant? To answer
this question, let’s look at an example.

Consider the function and evaluate this function at Since and the graph

of is the graph of shifted left 3 units. Similarly, the graph of is the graph of

shifted right units (Figure 1.24).
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Figure 1.24 (a) For the graph of is a horizontal shift left units of the graph of (b) For

the graph of is a horizontal shift right units of the graph of

A vertical scaling of a graph occurs if we multiply all outputs of a function by the same positive constant. For

the graph of the function is the graph of scaled vertically by a factor of If the values of the

outputs for the function are larger than the values of the outputs for the function therefore, the graph has been

stretched vertically. If then the outputs of the function are smaller, so the graph has been compressed.

For example, the graph of the function is the graph of stretched vertically by a factor of 3, whereas the

graph of is the graph of compressed vertically by a factor of (Figure 1.25).

Figure 1.25 (a) If the graph of is a vertical stretch of the graph

of (b) If the graph of is a vertical compression of

the graph of

The horizontal scaling of a function occurs if we multiply the inputs by the same positive constant. For the
graph of the function is the graph of scaled horizontally by a factor of If the graph of is the

graph of compressed horizontally. If the graph of is the graph of stretched horizontally. For
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example, consider the function and evaluate at Since the graph of is the

graph of compressed horizontally. The graph of is a horizontal stretch of the graph of (Figure
1.26).

Figure 1.26 (a) If the graph of is a horizontal compression of the graph

of (b) If the graph of is a horizontal stretch of the graph of

We have explored what happens to the graph of a function when we multiply by a constant to get a new

function We have also discussed what happens to the graph of a function when we multiply the independent

variable by to get a new function However, we have not addressed what happens to the graph of the

function if the constant is negative. If we have a constant we can write c as a positive number multiplied by
but, what kind of transformation do we get when we multiply the function or its argument by When we multiply

all the outputs by we get a reflection about the -axis. When we multiply all inputs by we get a reflection

about the -axis. For example, the graph of is the graph of reflected about the -axis.

The graph of is the graph of reflected about the -axis (Figure 1.27).

Chapter 1 | Functions and Graphs 55



Figure 1.27 (a) The graph of is the graph of

reflected about the -axis. (b) The graph of

is the graph of reflected about the

-axis.

If the graph of a function consists of more than one transformation of another graph, it is important to transform the graph
in the correct order. Given a function the graph of the related function can be obtained from

the graph of by performing the transformations in the following order.

1. Horizontal shift of the graph of If shift left. If shift right.

2. Horizontal scaling of the graph of by a factor of If reflect the graph about the -axis.

3. Vertical scaling of the graph of by a factor of If reflect the graph about the -axis.

4. Vertical shift of the graph of If shift up. If shift down.

We can summarize the different transformations and their related effects on the graph of a function in the following table.
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Transformation of ( ) Effect on the graph of

Vertical shift up units

Vertical shift down units

Shift left by units

Shift right by units

Vertical stretch if

vertical compression if

Horizontal stretch if horizontal compression if

Reflection about the -axis

Reflection about the -axis

Table 1.7 Transformations of Functions

Example 1.21

Transforming a Function

For each of the following functions, a. and b., sketch a graph by using a sequence of transformations of a well-
known function.

a.

b.

Solution
a. Starting with the graph of shift units to the left, reflect about the -axis, and then shift down

3 units.
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Figure 1.28 The function can be

viewed as a sequence of three transformations of the function

b. Starting with the graph of reflect about the -axis, stretch the graph vertically by a factor of 3,

and move up 1 unit.

Figure 1.29 The function can be viewed

as a sequence of three transformations of the function

Describe how the function can be graphed using the graph of and a

sequence of transformations.
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1.2 EXERCISES
For the following exercises, for each pair of points, a.
find the slope of the line passing through the points and
b. indicate whether the line is increasing, decreasing,
horizontal, or vertical.

59. and

60. and

61. and

62. and

63. and

64. and

65. and

66. and

For the following exercises, write the equation of the line
satisfying the given conditions in slope-intercept form.

67. Slope passes through

68. Slope passes through

69. Slope passes through

70. Slope -intercept

71. Passing through and

72. Passing through and

73. -intercept and -intercept

74. -intercept and -intercept

For the following exercises, for each linear equation, a. give
the slope and -intercept b, if any, and b. graph the line.

75.

76.

77.

78.

79.

80.

81.

82.

For the following exercises, for each polynomial, a. find the
degree; b. find the zeros, if any; c. find the -intercept(s),

if any; d. use the leading coefficient to determine the
graph’s end behavior; and e. determine algebraically
whether the polynomial is even, odd, or neither.

83.

84.

85.

86.

87.

For the following exercises, use the graph of to

graph each transformed function

88.

89.

For the following exercises, use the graph of to

graph each transformed function

90.

91.

For the following exercises, use the graph of to

graph each transformed function
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92.

93.

For the following exercises, for each of the piecewise-
defined functions, a. evaluate at the given values of the
independent variable and b. sketch the graph.

94.

95.

96.

97.

For the following exercises, determine whether the
statement is true or false. Explain why.

98. is a transcendental

function.

99. is an odd root function

100. A logarithmic function is an algebraic function.

101. A function of the form where is a

real valued constant, is an exponential function.

102. The domain of an even root function is all real
numbers.

103. [T] A company purchases some computer equipment
for $20,500. At the end of a 3-year period, the value of the
equipment has decreased linearly to $12,300.

a. Find a function that determines the value

V of the equipment at the end of t years.
b. Find and interpret the meaning of the - and

-intercepts for this situation.
c. What is the value of the equipment at the end of 5

years?
d. When will the value of the equipment be $3000?

104. [T] Total online shopping during the Christmas
holidays has increased dramatically during the past 5 years.
In 2012 total online holiday sales were $42.3
billion, whereas in 2013 they were $48.1 billion.

a. Find a linear function S that estimates the total
online holiday sales in the year t.

b. Interpret the slope of the graph of S.
c. Use part a. to predict the year when online shopping

during Christmas will reach $60 billion.

105. [T] A family bakery makes cupcakes and sells them
at local outdoor festivals. For a music festival, there is a
fixed cost of $125 to set up a cupcake stand. The owner
estimates that it costs $0.75 to make each cupcake. The
owner is interested in determining the total cost as a
function of number of cupcakes made.

a. Find a linear function that relates cost C to x, the
number of cupcakes made.

b. Find the cost to bake 160 cupcakes.
c. If the owner sells the cupcakes for $1.50 apiece,

how many cupcakes does she need to sell to start
making profit? (Hint: Use the INTERSECTION
function on a calculator to find this number.)

106. [T] A house purchased for $250,000 is expected to
be worth twice its purchase price in 18 years.

a. Find a linear function that models the price P of
the house versus the number of years t since the
original purchase.

b. Interpret the slope of the graph of P.
c. Find the price of the house 15 years from when it

was originally purchased.

107. [T] A car was purchased for $26,000. The value of
the car depreciates by $1500 per year.

a. Find a linear function that models the value V of the
car after t years.

b. Find and interpret

108. [T] A condominium in an upscale part of the city was
purchased for $432,000. In 35 years it is worth $60,500.
Find the rate of depreciation.

109. [T] The total cost C (in thousands of dollars) to
produce a certain item is modeled by the function

where x is the number of items
produced. Determine the cost to produce 175 items.
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110. [T] A professor asks her class to report the amount
of time t they spent writing two assignments. Most students
report that it takes them about 45 minutes to type a four-
page assignment and about 1.5 hours to type a nine-page
assignment.

a. Find the linear function that models this

situation, where is the number of pages typed
and t is the time in minutes.

b. Use part a. to determine how many pages can be
typed in 2 hours.

c. Use part a. to determine how long it takes to type a
20-page assignment.

111. [T] The output (as a percent of total capacity) of
nuclear power plants in the United States can be modeled
by the function where t is time
in years and corresponds to the beginning of 2000.
Use the model to predict the percentage output in 2015.

112. [T] The admissions office at a public university
estimates that 65% of the students offered admission to the
class of 2019 will actually enroll.

a. Find the linear function where is

the number of students that actually enroll and is
the number of all students offered admission to the
class of 2019.

b. If the university wants the 2019 freshman class size
to be 1350, determine how many students should be
admitted.
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1.3 | Trigonometric Functions

Learning Objectives
1.3.1 Convert angle measures between degrees and radians.
1.3.2 Recognize the triangular and circular definitions of the basic trigonometric functions.
1.3.3 Write the basic trigonometric identities.
1.3.4 Identify the graphs and periods of the trigonometric functions.
1.3.5 Describe the shift of a sine or cosine graph from the equation of the function.

Trigonometric functions are used to model many phenomena, including sound waves, vibrations of strings, alternating
electrical current, and the motion of pendulums. In fact, almost any repetitive, or cyclical, motion can be modeled by some
combination of trigonometric functions. In this section, we define the six basic trigonometric functions and look at some of
the main identities involving these functions.

Radian Measure
To use trigonometric functions, we first must understand how to measure the angles. Although we can use both radians and
degrees, radians are a more natural measurement because they are related directly to the unit circle, a circle with radius 1.
The radian measure of an angle is defined as follows. Given an angle let be the length of the corresponding arc on
the unit circle (Figure 1.30). We say the angle corresponding to the arc of length 1 has radian measure 1.

Figure 1.30 The radian measure of an angle is the arc
length of the associated arc on the unit circle.

Since an angle of corresponds to the circumference of a circle, or an arc of length we conclude that an angle
with a degree measure of has a radian measure of Similarly, we see that is equivalent to radians. Table
1.8 shows the relationship between common degree and radian values.
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1.17

Degrees Radians Degrees Radians

0 0 120

30 135

45 150

60 180

90

Table 1.8 Common Angles Expressed in Degrees and
Radians

Example 1.22

Converting between Radians and Degrees

a. Express using radians.

b. Express rad using degrees.

Solution

Use the fact that is equivalent to radians as a conversion factor:

a. rad

b. rad =

Express using radians. Express rad using degrees.

The Six Basic Trigonometric Functions
Trigonometric functions allow us to use angle measures, in radians or degrees, to find the coordinates of a point on any
circle—not only on a unit circle—or to find an angle given a point on a circle. They also define the relationship among the
sides and angles of a triangle.

To define the trigonometric functions, first consider the unit circle centered at the origin and a point on the unit

circle. Let be an angle with an initial side that lies along the positive -axis and with a terminal side that is the line
segment An angle in this position is said to be in standard position (Figure 1.31). We can then define the values of
the six trigonometric functions for in terms of the coordinates and
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Figure 1.31 The angle is in standard position. The values
of the trigonometric functions for are defined in terms of the
coordinates and

Definition

Let be a point on the unit circle centered at the origin Let be an angle with an initial side along the

positive -axis and a terminal side given by the line segment The trigonometric functions are then defined as

(1.9)

If and are undefined. If then and are undefined.

We can see that for a point on a circle of radius with a corresponding angle the coordinates and

satisfy

The values of the other trigonometric functions can be expressed in terms of and (Figure 1.32).
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Figure 1.32 For a point on a circle of radius

the coordinates and satisfy and

Table 1.9 shows the values of sine and cosine at the major angles in the first quadrant. From this table, we can determine
the values of sine and cosine at the corresponding angles in the other quadrants. The values of the other trigonometric
functions are calculated easily from the values of and

Table 1.9 Values of
and at Major Angles

in the First Quadrant

Example 1.23

Evaluating Trigonometric Functions

Evaluate each of the following expressions.

a.

b.
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c.

Solution

a. On the unit circle, the angle corresponds to the point Therefore,

b. An angle corresponds to a revolution in the negative direction, as shown. Therefore,

c. An angle Therefore, this angle corresponds to more than one revolution, as shown.

Knowing the fact that an angle of corresponds to the point we can conclude that
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1.18 Evaluate and

As mentioned earlier, the ratios of the side lengths of a right triangle can be expressed in terms of the trigonometric functions
evaluated at either of the acute angles of the triangle. Let be one of the acute angles. Let be the length of the adjacent
leg, be the length of the opposite leg, and be the length of the hypotenuse. By inscribing the triangle into a circle of
radius as shown in Figure 1.33, we see that and satisfy the following relationships with

Figure 1.33 By inscribing a right triangle in a circle, we can
express the ratios of the side lengths in terms of the
trigonometric functions evaluated at

Example 1.24

Constructing a Wooden Ramp

A wooden ramp is to be built with one end on the ground and the other end at the top of a short staircase. If the
top of the staircase is ft from the ground and the angle between the ground and the ramp is to be how
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long does the ramp need to be?

Solution
Let denote the length of the ramp. In the following image, we see that needs to satisfy the equation

Solving this equation for we see that ft.

A house painter wants to lean a -ft ladder against a house. If the angle between the base of the ladder
and the ground is to be how far from the house should she place the base of the ladder?

Trigonometric Identities
A trigonometric identity is an equation involving trigonometric functions that is true for all angles for which the
functions are defined. We can use the identities to help us solve or simplify equations. The main trigonometric identities are
listed next.

Rule: Trigonometric Identities

Reciprocal identities

Pythagorean identities

Addition and subtraction formulas

Double-angle formulas

Example 1.25

Solving Trigonometric Equations

For each of the following equations, use a trigonometric identity to find all solutions.

a.

b.
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Solution
a. Using the double-angle formula for we see that is a solution of

if and only if

which is true if and only if

To solve this equation, it is important to note that we need to factor the left-hand side and not divide both
sides of the equation by The problem with dividing by is that it is possible that is
zero. In fact, if we did divide both sides of the equation by we would miss some of the solutions
of the original equation. Factoring the left-hand side of the equation, we see that is a solution of this
equation if and only if

Since when

and when

we conclude that the set of solutions to this equation is

b. Using the double-angle formula for and the reciprocal identity for the equation can be
written as

To solve this equation, we multiply both sides by to eliminate the denominator, and say that if
satisfies this equation, then satisfies the equation

However, we need to be a little careful here. Even if satisfies this new equation, it may not satisfy the
original equation because, to satisfy the original equation, we would need to be able to divide both sides
of the equation by However, if we cannot divide both sides of the equation by
Therefore, it is possible that we may arrive at extraneous solutions. So, at the end, it is important to check
for extraneous solutions. Returning to the equation, it is important that we factor out of both terms
on the left-hand side instead of dividing both sides of the equation by Factoring the left-hand side
of the equation, we can rewrite this equation as
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1.21

Therefore, the solutions are given by the angles such that or The solutions
of the first equation are The solutions of the second equation are

After checking for extraneous solutions, the set of solutions to the
equation is

Find all solutions to the equation

Example 1.26

Proving a Trigonometric Identity

Prove the trigonometric identity

Solution
We start with the identity

Dividing both sides of this equation by we obtain

Since and we conclude that

Prove the trigonometric identity

Graphs and Periods of the Trigonometric Functions
We have seen that as we travel around the unit circle, the values of the trigonometric functions repeat. We can see this
pattern in the graphs of the functions. Let be a point on the unit circle and let be the corresponding angle

Since the angle and correspond to the same point the values of the trigonometric functions at and
at are the same. Consequently, the trigonometric functions are periodic functions. The period of a function is

defined to be the smallest positive value such that for all values in the domain of The sine,

cosine, secant, and cosecant functions have a period of Since the tangent and cotangent functions repeat on an interval
of length their period is (Figure 1.34).
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Figure 1.34 The six trigonometric functions are periodic.

Just as with algebraic functions, we can apply transformations to trigonometric functions. In particular, consider the
following function:

(1.10)

In Figure 1.35, the constant causes a horizontal or phase shift. The factor changes the period. This transformed
sine function will have a period The factor results in a vertical stretch by a factor of We say is the
“amplitude of ” The constant causes a vertical shift.

Figure 1.35 A graph of a general sine function.

Notice in Figure 1.34 that the graph of is the graph of shifted to the left units. Therefore, we
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can write Similarly, we can view the graph of as the graph of shifted right

units, and state that

A shifted sine curve arises naturally when graphing the number of hours of daylight in a given location as a function of
the day of the year. For example, suppose a city reports that June 21 is the longest day of the year with hours and
December 21 is the shortest day of the year with hours. It can be shown that the function

is a model for the number of hours of daylight as a function of day of the year (Figure 1.36).

Figure 1.36 The hours of daylight as a function of day of the year can be modeled
by a shifted sine curve.

Example 1.27

Sketching the Graph of a Transformed Sine Curve

Sketch a graph of

Solution
This graph is a phase shift of to the right by units, followed by a horizontal compression by a

factor of 2, a vertical stretch by a factor of 3, and then a vertical shift by 1 unit. The period of is
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1.22 Describe the relationship between the graph of and the graph of
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1.3 EXERCISES
For the following exercises, convert each angle in degrees
to radians. Write the answer as a multiple of

113.

114.

115.

116.

117.

For the following exercises, convert each angle in radians
to degrees.

118.

119.

120.

121.

122.

Evaluate the following functional values.

123.

124.

125.

126.

127.

128.

For the following exercises, consider triangle ABC, a right
triangle with a right angle at C. a. Find the missing side of
the triangle. b. Find the six trigonometric function values
for the angle at A. Where necessary, round to one decimal
place.

129.

130.

131.

132.

133.

134.

For the following exercises, is a point on the unit circle.
a. Find the (exact) missing coordinate value of each point
and b. find the values of the six trigonometric functions for
the angle with a terminal side that passes through point

Rationalize denominators.

135.

136.

137.

138.

For the following exercises, simplify each expression by
writing it in terms of sines and cosines, then simplify. The
final answer does not have to be in terms of sine and cosine
only.

139.

140.

141.

142.

143.
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144.

145.

146.

For the following exercises, verify that each equation is an
identity.

147.

148.

149.

150.

151.

152.

153.

154.

For the following exercises, solve the trigonometric
equations on the interval

155.

156.

157.

158.

159.

160.

161.

162.

For the following exercises, each graph is of the form
or where Write the

equation of the graph.

163.

164.

165.
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166.

For the following exercises, find a. the amplitude, b. the
period, and c. the phase shift with direction for each
function.

167.

168.

169.

170.

171.

172.

173. [T] The diameter of a wheel rolling on the ground
is 40 in. If the wheel rotates through an angle of
how many inches does it move? Approximate to the nearest
whole inch.

174. [T] Find the length of the arc intercepted by central
angle in a circle of radius r. Round to the nearest

hundredth. a. cm, rad b. cm,

rad c. cm, d. cm,

175. [T] As a point P moves around a circle, the measure
of the angle changes. The measure of how fast the angle
is changing is called angular speed, and is given by

where is in radians and t is time. Find the
angular speed for the given data. Round to the nearest
thousandth. a. sec b.

sec c. min d.

min

176. [T] A total of 250,000 m2 of land is needed to build a
nuclear power plant. Suppose it is decided that the area on
which the power plant is to be built should be circular.

a. Find the radius of the circular land area.
b. If the land area is to form a sector of a circle

instead of a whole circle, find the length of the
curved side.

177. [T] The area of an isosceles triangle with equal sides
of length x is where is the angle formed by

the two sides. Find the area of an isosceles triangle with
equal sides of length 8 in. and angle rad.

178. [T] A particle travels in a circular path at a constant
angular speed The angular speed is modeled by the
function Determine the angular
speed at sec.

179. [T] An alternating current for outlets in a home has
voltage given by the function where
V is the voltage in volts at time t in seconds.

a. Find the period of the function and interpret its
meaning.

b. Determine the number of periods that occur when 1
sec has passed.

180. [T] The number of hours of daylight in a northeast
city is modeled by the function

where t is the number of days after January 1.
a. Find the amplitude and period.
b. Determine the number of hours of daylight on the

longest day of the year.
c. Determine the number of hours of daylight on the

shortest day of the year.
d. Determine the number of hours of daylight 90 days

after January 1.
e. Sketch the graph of the function for one period

starting on January 1.
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181. [T] Suppose that is a

mathematical model of the temperature (in degrees
Fahrenheit) at t hours after midnight on a certain day of the
week.

a. Determine the amplitude and period.
b. Find the temperature 7 hours after midnight.
c. At what time does
d. Sketch the graph of over

182. [T] The function models the height

H (in feet) of the tide t hours after midnight. Assume that
is midnight.

a. Find the amplitude and period.
b. Graph the function over one period.
c. What is the height of the tide at 4:30 a.m.?
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1.4 | Inverse Functions

Learning Objectives
1.4.1 Determine the conditions for when a function has an inverse.
1.4.2 Use the horizontal line test to recognize when a function is one-to-one.
1.4.3 Find the inverse of a given function.
1.4.4 Draw the graph of an inverse function.
1.4.5 Evaluate inverse trigonometric functions.

An inverse function reverses the operation done by a particular function. In other words, whatever a function does, the
inverse function undoes it. In this section, we define an inverse function formally and state the necessary conditions for an
inverse function to exist. We examine how to find an inverse function and study the relationship between the graph of a
function and the graph of its inverse. Then we apply these ideas to define and discuss properties of the inverse trigonometric
functions.

Existence of an Inverse Function
We begin with an example. Given a function and an output we are often interested in finding what

value or values were mapped to by For example, consider the function Since any output

we can solve this equation for to find that the input is This equation defines as a function

of Denoting this function as and writing we see that for any in the domain of

Thus, this new function, “undid” what the original function did. A function

with this property is called the inverse function of the original function.

Definition

Given a function with domain and range its inverse function (if it exists) is the function with domain

and range such that if In other words, for a function and its inverse

(1.11)

Note that is read as “f inverse.” Here, the is not used as an exponent and Figure 1.37 shows

the relationship between the domain and range of f and the domain and range of

Figure 1.37 Given a function and its inverse

if and only if The range of

becomes the domain of and the domain of becomes the

range of

Recall that a function has exactly one output for each input. Therefore, to define an inverse function, we need to map each
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input to exactly one output. For example, let’s try to find the inverse function for Solving the equation

for we arrive at the equation This equation does not describe as a function of because there are two

solutions to this equation for every The problem with trying to find an inverse function for is that two

inputs are sent to the same output for each output The function discussed earlier did not have this

problem. For that function, each input was sent to a different output. A function that sends each input to a different output
is called a one-to-one function.

Definition

We say a is a one-to-one function if when

One way to determine whether a function is one-to-one is by looking at its graph. If a function is one-to-one, then no two
inputs can be sent to the same output. Therefore, if we draw a horizontal line anywhere in the -plane, according to the

horizontal line test, it cannot intersect the graph more than once. We note that the horizontal line test is different from
the vertical line test. The vertical line test determines whether a graph is the graph of a function. The horizontal line test
determines whether a function is one-to-one (Figure 1.38).

Rule: Horizontal Line Test

A function is one-to-one if and only if every horizontal line intersects the graph of no more than once.

Figure 1.38 (a) The function is not one-to-one

because it fails the horizontal line test. (b) The function
is one-to-one because it passes the horizontal line

test.

Example 1.28

Determining Whether a Function Is One-to-One

For each of the following functions, use the horizontal line test to determine whether it is one-to-one.
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a.

b.

Solution
a. Since the horizontal line for any integer intersects the graph more than once, this function

is not one-to-one.
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1.23

b. Since every horizontal line intersects the graph once (at most), this function is one-to-one.

Is the function graphed in the following image one-to-one?
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Finding a Function’s Inverse
We can now consider one-to-one functions and show how to find their inverses. Recall that a function maps elements in
the domain of to elements in the range of The inverse function maps each element from the range of back to its

corresponding element from the domain of Therefore, to find the inverse function of a one-to-one function given

any in the range of we need to determine which in the domain of satisfies Since is one-to-one,

there is exactly one such value We can find that value by solving the equation for Doing so, we are

able to write as a function of where the domain of this function is the range of and the range of this new function

is the domain of Consequently, this function is the inverse of and we write Since we typically use the

variable to denote the independent variable and to denote the dependent variable, we often interchange the roles of

and and write Representing the inverse function in this way is also helpful later when we graph a function

and its inverse on the same axes.

Problem-Solving Strategy: Finding an Inverse Function

1. Solve the equation for

2. Interchange the variables and and write

Example 1.29

Finding an Inverse Function

Find the inverse for the function State the domain and range of the inverse function. Verify that

Solution
Follow the steps outlined in the strategy.

Step 1. If then and

Step 2. Rewrite as and let

Therefore,

Since the domain of is the range of is Since the range of is the

domain of is

You can verify that by writing

Note that for to be the inverse of both and for all x in the domain

of the inside function.
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1.24 Find the inverse of the function State the domain and range of the inverse function.

Graphing Inverse Functions
Let’s consider the relationship between the graph of a function and the graph of its inverse. Consider the graph of

shown in Figure 1.39 and a point on the graph. Since then Therefore, when we graph

the point is on the graph. As a result, the graph of is a reflection of the graph of about the line

Figure 1.39 (a) The graph of this function shows point on the graph of (b)

Since is on the graph of the point is on the graph of The graph of

is a reflection of the graph of about the line

Example 1.30

Sketching Graphs of Inverse Functions

For the graph of in the following image, sketch a graph of by sketching the line and using

symmetry. Identify the domain and range of
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Solution

Reflect the graph about the line The domain of is The range of is By using

the preceding strategy for finding inverse functions, we can verify that the inverse function is

as shown in the graph.

Sketch the graph of and the graph of its inverse using the symmetry property of inverse

functions.

Restricting Domains

As we have seen, does not have an inverse function because it is not one-to-one. However, we can choose a

subset of the domain of such that the function is one-to-one. This subset is called a restricted domain. By restricting the

domain of we can define a new function such that the domain of is the restricted domain of and

for all in the domain of Then we can define an inverse function for on that domain. For example, since

is one-to-one on the interval we can define a new function such that the domain of is and

for all in its domain. Since is a one-to-one function, it has an inverse function, given by the formula On

the other hand, the function is also one-to-one on the domain Therefore, we could also define a new

function such that the domain of is and for all in the domain of Then is a one-to-one

function and must also have an inverse. Its inverse is given by the formula (Figure 1.40).
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Figure 1.40 (a) For restricted to (b) For

restricted to

Example 1.31

Restricting the Domain

Consider the function

a. Sketch the graph of and use the horizontal line test to show that is not one-to-one.

b. Show that is one-to-one on the restricted domain Determine the domain and range for the

inverse of on this restricted domain and find a formula for

Solution

a. The graph of is the graph of shifted left 1 unit. Since there exists a horizontal line intersecting

the graph more than once, is not one-to-one.

b. On the interval is one-to-one.
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The domain and range of are given by the range and domain of respectively. Therefore, the

domain of is and the range of is To find a formula for solve the

equation for If then Since we are restricting the domain

to the interval where we need Therefore, Interchanging and

we write and conclude that

Consider restricted to the domain Verify that is one-to-one on this domain.

Determine the domain and range of the inverse of and find a formula for

Inverse Trigonometric Functions
The six basic trigonometric functions are periodic, and therefore they are not one-to-one. However, if we restrict the domain
of a trigonometric function to an interval where it is one-to-one, we can define its inverse. Consider the sine function
(Figure 1.34). The sine function is one-to-one on an infinite number of intervals, but the standard convention is to restrict

the domain to the interval By doing so, we define the inverse sine function on the domain such that

for any in the interval the inverse sine function tells us which angle in the interval satisfies

Similarly, we can restrict the domains of the other trigonometric functions to define inverse trigonometric
functions, which are functions that tell us which angle in a certain interval has a specified trigonometric value.

Definition

The inverse sine function, denoted or arcsin, and the inverse cosine function, denoted or arccos, are
defined on the domain as follows:
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(1.12)

The inverse tangent function, denoted or arctan, and inverse cotangent function, denoted or arccot, are
defined on the domain as follows:

(1.13)

The inverse cosecant function, denoted or arccsc, and inverse secant function, denoted or arcsec, are
defined on the domain as follows:

(1.14)

To graph the inverse trigonometric functions, we use the graphs of the trigonometric functions restricted to the domains
defined earlier and reflect the graphs about the line (Figure 1.41).

Figure 1.41 The graph of each of the inverse trigonometric functions is a reflection about the line of

the corresponding restricted trigonometric function.

Go to the following site (http://www.openstax.org/l/20_inversefun) for more comparisons of functions
and their inverses.
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When evaluating an inverse trigonometric function, the output is an angle. For example, to evaluate we need to

find an angle such that Clearly, many angles have this property. However, given the definition of we

need the angle that not only solves this equation, but also lies in the interval We conclude that

We now consider a composition of a trigonometric function and its inverse. For example, consider the two expressions

and For the first one, we simplify as follows:

For the second one, we have

The inverse function is supposed to “undo” the original function, so why isn’t Recalling our definition

of inverse functions, a function and its inverse satisfy the conditions for all in the domain of

and for all in the domain of so what happened here? The issue is that the inverse sine function,

is the inverse of the restricted sine function defined on the domain Therefore, for in the interval

it is true that However, for values of outside this interval, the equation does not hold, even

though is defined for all real numbers

What about Does that have a similar issue? The answer is no. Since the domain of is the interval

we conclude that if and the expression is not defined for other values of To

summarize,

and

Similarly, for the cosine function,

and

Similar properties hold for the other trigonometric functions and their inverses.

Example 1.32

Evaluating Expressions Involving Inverse Trigonometric Functions

Evaluate each of the following expressions.

a.

b.
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c.

d.

Solution

a. Evaluating is equivalent to finding the angle such that and

The angle satisfies these two conditions. Therefore,

b. First we use the fact that Then Therefore,

c. To evaluate first use the fact that Then we need to find the

angle such that and Since satisfies both these conditions, we have

d. Since we need to evaluate That is, we need to find the angle such
that and Since satisfies both these conditions, we can conclude

that
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The Maximum Value of a Function

In many areas of science, engineering, and mathematics, it is useful to know the maximum value a function can obtain,
even if we don’t know its exact value at a given instant. For instance, if we have a function describing the strength
of a roof beam, we would want to know the maximum weight the beam can support without breaking. If we have a
function that describes the speed of a train, we would want to know its maximum speed before it jumps off the rails.
Safe design often depends on knowing maximum values.

This project describes a simple example of a function with a maximum value that depends on two equation coefficients.
We will see that maximum values can depend on several factors other than the independent variable x.

1. Consider the graph in Figure 1.42 of the function Describe its overall shape. Is it periodic?

How do you know?

Figure 1.42 The graph of

Using a graphing calculator or other graphing device, estimate the - and -values of the maximum point for

the graph (the first such point where x > 0). It may be helpful to express the -value as a multiple of π.

2. Now consider other graphs of the form for various values of A and B. Sketch the graph

when A = 2 and B = 1, and find the - and y-values for the maximum point. (Remember to express the x-value
as a multiple of π, if possible.) Has it moved?

3. Repeat for A = 1, B = 2. Is there any relationship to what you found in part (2)?

4. Complete the following table, adding a few choices of your own for A and B:
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A B x y A B x y

0 1 1

1 0 1

1 1 12 5

1 2 5 12

2 1

2 2

3 4

4 3

5. Try to figure out the formula for the y-values.

6. The formula for the -values is a little harder. The most helpful points from the table are
(Hint: Consider inverse trigonometric functions.)

7. If you found formulas for parts (5) and (6), show that they work together. That is, substitute the -value
formula you found into and simplify it to arrive at the -value formula you found.
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1.4 EXERCISES
For the following exercises, use the horizontal line test to
determine whether each of the given graphs is one-to-one.

183.

184.

185.

186.

187.

188.

For the following exercises, a. find the inverse function,
and b. find the domain and range of the inverse function.

189.

190.

191.

192.
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193.

194.

For the following exercises, use the graph of to sketch

the graph of its inverse function.

195.

196.

197.

198.

For the following exercises, use composition to determine
which pairs of functions are inverses.

199.

200.

201.

202.

203.

204.

205.

206.

For the following exercises, evaluate the functions. Give
the exact value.

207.

208.

209.

210.

211.
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212.

213.

214.

215.

216. The function converts
degrees Fahrenheit to degrees Celsius.

a. Find the inverse function
b. What is the inverse function used for?

217. [T] The velocity V (in centimeters per second) of
blood in an artery at a distance x cm from the center of
the artery can be modeled by the function

for

a. Find

b. Interpret what the inverse function is used for.
c. Find the distance from the center of an artery with

a velocity of 15 cm/sec, 10 cm/sec, and 5 cm/sec.

218. A function that converts dress sizes in the United
States to those in Europe is given by

a. Find the European dress sizes that correspond to
sizes 6, 8, 10, and 12 in the United States.

b. Find the function that converts European dress
sizes to U.S. dress sizes.

c. Use part b. to find the dress sizes in the United
States that correspond to 46, 52, 62, and 70.

219. [T] The cost to remove a toxin from a lake is
modeled by the function where

is the cost (in thousands of dollars) and is the amount

of toxin in a small lake (measured in parts per billion
[ppb]). This model is valid only when the amount of toxin
is less than 85 ppb.

a. Find the cost to remove 25 ppb, 40 ppb, and 50 ppb
of the toxin from the lake.

b. Find the inverse function. c. Use part b. to
determine how much of the toxin is removed for
$50,000.

220. [T] A race car is accelerating at a velocity given
by where v is the velocity (in feet per

second) at time t.
a. Find the velocity of the car at 10 sec.
b. Find the inverse function.
c. Use part b. to determine how long it takes for the

car to reach a speed of 150 ft/sec.

221. [T] An airplane’s Mach number M is the ratio of
its speed to the speed of sound. When a plane is flying
at a constant altitude, then its Mach angle is given by

Find the Mach angle (to the nearest

degree) for the following Mach numbers.

a.
b.
c.

222. [T] Using find the Mach number

M for the following angles.
a.

b.

c.

223. [T] The average temperature (in degrees Celsius)
of a city in the northern United States can be modeled

by the function where

is time in months and corresponds to January
1. Determine the month and day when the average
temperature is

224. [T] The depth (in feet) of water at a dock changes
with the rise and fall of tides. It is modeled by the function

where is the number of

hours after midnight. Determine the first time after
midnight when the depth is 11.75 ft.

225. [T] An object moving in simple harmonic motion

is modeled by the function where

is measured in inches and is measured in seconds.
Determine the first time when the distance moved is 4.5 in.
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226. [T] A local art gallery has a portrait 3 ft in height
that is hung 2.5 ft above the eye level of an average person.
The viewing angle can be modeled by the function

where is the distance (in

feet) from the portrait. Find the viewing angle when a
person is 4 ft from the portrait.

227. [T] Use a calculator to evaluate and

Explain the results of each.

228. [T] Use a calculator to evaluate and

Explain the results of each.
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1.5 | Exponential and Logarithmic Functions

Learning Objectives
1.5.1 Identify the form of an exponential function.

1.5.2 Explain the difference between the graphs of and

1.5.3 Recognize the significance of the number

1.5.4 Identify the form of a logarithmic function.
1.5.5 Explain the relationship between exponential and logarithmic functions.
1.5.6 Describe how to calculate a logarithm to a different base.
1.5.7 Identify the hyperbolic functions, their graphs, and basic identities.

In this section we examine exponential and logarithmic functions. We use the properties of these functions to solve
equations involving exponential or logarithmic terms, and we study the meaning and importance of the number We also
define hyperbolic and inverse hyperbolic functions, which involve combinations of exponential and logarithmic functions.
(Note that we present alternative definitions of exponential and logarithmic functions in the chapter Applications of
Integrations, and prove that the functions have the same properties with either definition.)

Exponential Functions
Exponential functions arise in many applications. One common example is population growth.

For example, if a population starts with individuals and then grows at an annual rate of its population after 1 year

is

Its population after 2 years is

In general, its population after years is

which is an exponential function. More generally, any function of the form where is an

exponential function with base and exponent x. Exponential functions have constant bases and variable exponents. Note

that a function of the form for some constant is not an exponential function but a power function.

To see the difference between an exponential function and a power function, we compare the functions and

In Table 1.10, we see that both and approach infinity as Eventually, however, becomes larger than

and grows more rapidly as In the opposite direction, as whereas The line

is a horizontal asymptote for

Table 1.10 Values of and
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In Figure 1.43, we graph both and to show how the graphs differ.

Figure 1.43 Both and approach infinity as

but grows more rapidly than As

whereas

Evaluating Exponential Functions

Recall the properties of exponents: If is a positive integer, then we define (with factors of If

is a negative integer, then for some positive integer and we define Also, is defined

to be If is a rational number, then where and are integers and For example,

However, how is defined if is an irrational number? For example, what do we mean by
This is too complex a question for us to answer fully right now; however, we can make an approximation. In Table 1.11,
we list some rational numbers approaching and the values of for each rational number are presented as well.

We claim that if we choose rational numbers getting closer and closer to the values of get closer and closer to

some number We define that number to be

Table 1.11 Values of for a List of Rational Numbers Approximating

Example 1.33

Bacterial Growth

Suppose a particular population of bacteria is known to double in size every hours. If a culture starts with
bacteria, the number of bacteria after hours is The number of bacteria after hours is

In general, the number of bacteria after hours is Letting
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we see that the number of bacteria after hours is Find the number of bacteria
after hours, hours, and hours.

Solution

The number of bacteria after 6 hours is given by bacteria. The number of bacteria

after hours is given by bacteria. The number of bacteria after hours is

given by bacteria.

Given the exponential function evaluate and

Go to World Population Balance (http://www.openstax.org/l/20_exponengrow) for another example of
exponential population growth.

Graphing Exponential Functions

For any base the exponential function is defined for all real numbers and Therefore,

the domain of is and the range is To graph we note that for is increasing

on and as whereas as On the other hand, if is

decreasing on and as whereas as (Figure 1.44).

Figure 1.44 If then is increasing on

If then is decreasing on

Visit this site (http://www.openstax.org/l/20_inverse) for more exploration of the graphs of exponential
functions.

Note that exponential functions satisfy the general laws of exponents. To remind you of these laws, we state them as rules.

Rule: Laws of Exponents

For any constants and for all x and y,

1.

2.
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3.

4.

5.

Example 1.34

Using the Laws of Exponents

Use the laws of exponents to simplify each of the following expressions.

a.

b.

Solution
a. We can simplify as follows:

b. We can simplify as follows:

Use the laws of exponents to simplify

The Number e
A special type of exponential function appears frequently in real-world applications. To describe it, consider the following
example of exponential growth, which arises from compounding interest in a savings account. Suppose a person invests
dollars in a savings account with an annual interest rate compounded annually. The amount of money after 1 year is

The amount of money after years is

More generally, the amount after years is
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If the money is compounded 2 times per year, the amount of money after half a year is

The amount of money after year is

After years, the amount of money in the account is

More generally, if the money is compounded times per year, the amount of money in the account after years is given
by the function

What happens as To answer this question, we let and write

and examine the behavior of as using a table of values (Table 1.12).

⎛
⎝

⎞
⎠

Table 1.12 Values of as

Looking at this table, it appears that is approaching a number between and as In fact,

does approach some number as We call this number . To six decimal places of accuracy,

The letter was first used to represent this number by the Swiss mathematician Leonhard Euler during the 1720s. Although
Euler did not discover the number, he showed many important connections between and logarithmic functions. We still
use the notation today to honor Euler’s work because it appears in many areas of mathematics and because we can use it
in many practical applications.

Returning to our savings account example, we can conclude that if a person puts dollars in an account at an annual
interest rate compounded continuously, then This function may be familiar. Since functions involving

base arise often in applications, we call the function the natural exponential function. Not only is this

function interesting because of the definition of the number but also, as discussed next, its graph has an important
property.

Since we know is increasing on In Figure 1.45, we show a graph of along with a

tangent line to the graph of at We give a precise definition of tangent line in the next chapter; but, informally, we
say a tangent line to a graph of at is a line that passes through the point and has the same “slope” as

at that point The function is the only exponential function with tangent line at that has a slope

of 1. As we see later in the text, having this property makes the natural exponential function the most simple exponential
function to use in many instances.
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Figure 1.45 The graph of has a tangent line with

slope at

Example 1.35

Compounding Interest

Suppose is invested in an account at an annual interest rate of compounded continuously.

a. Let denote the number of years after the initial investment and denote the amount of money in
the account at time Find a formula for

b. Find the amount of money in the account after years and after years.

Solution
a. If dollars are invested in an account at an annual interest rate compounded continuously, then

Here and Therefore,

b. After years, the amount of money in the account is

After years, the amount of money in the account is

If is invested in an account at an annual interest rate of compounded continuously, find a
formula for the amount of money in the account after years. Find the amount of money after years.

Logarithmic Functions
Using our understanding of exponential functions, we can discuss their inverses, which are the logarithmic functions. These
come in handy when we need to consider any phenomenon that varies over a wide range of values, such as pH in chemistry
or decibels in sound levels.

The exponential function is one-to-one, with domain and range Therefore, it has an inverse

function, called the logarithmic function with base For any the logarithmic function with base b,
denoted has domain and range and satisfies

For example,
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Furthermore, since and are inverse functions,

The most commonly used logarithmic function is the function Since this function uses natural as its base, it is

called the natural logarithm. Here we use the notation or to mean For example,

Since the functions and are inverses of each other,

and their graphs are symmetric about the line (Figure 1.46).

Figure 1.46 The functions and are

inverses of each other, so their graphs are symmetric about the
line

At this site (http://www.openstax.org/l/20_logscale) you can see an example of a base-10 logarithmic scale.

In general, for any base the function is symmetric about the line with the function

Using this fact and the graphs of the exponential functions, we graph functions for several values of

(Figure 1.47).
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Figure 1.47 Graphs of are depicted for

Before solving some equations involving exponential and logarithmic functions, let’s review the basic properties of
logarithms.

Rule: Properties of Logarithms

If and is any real number, then

Example 1.36

Solving Equations Involving Exponential Functions

Solve each of the following equations for

a.

b.

Solution
a. Applying the natural logarithm function to both sides of the equation, we have

Using the power property of logarithms,

Therefore,

b. Multiplying both sides of the equation by we arrive at the equation
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Rewriting this equation as

we can then rewrite it as a quadratic equation in

Now we can solve the quadratic equation. Factoring this equation, we obtain

Therefore, the solutions satisfy and Taking the natural logarithm of both sides gives us
the solutions

Solve

Example 1.37

Solving Equations Involving Logarithmic Functions

Solve each of the following equations for

a.

b.

c.

Solution
a. By the definition of the natural logarithm function,

Therefore, the solution is

b. Using the product and power properties of logarithmic functions, rewrite the left-hand side of the equation
as

Therefore, the equation can be rewritten as
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The solution is

c. Using the power property of logarithmic functions, we can rewrite the equation as

Using the quotient property, this becomes

Therefore, which implies We should then check for any extraneous solutions.

Solve

When evaluating a logarithmic function with a calculator, you may have noticed that the only options are or log,

called the common logarithm, or ln, which is the natural logarithm. However, exponential functions and logarithm functions
can be expressed in terms of any desired base If you need to use a calculator to evaluate an expression with a different
base, you can apply the change-of-base formulas first. Using this change of base, we typically write a given exponential or
logarithmic function in terms of the natural exponential and natural logarithmic functions.

Rule: Change-of-Base Formulas

Let and

1. for any real number

If this equation reduces to

2. for any real number

If this equation reduces to

Proof
For the first change-of-base formula, we begin by making use of the power property of logarithmic functions. We know that
for any base Therefore,

In addition, we know that and are inverse functions. Therefore,

Combining these last two equalities, we conclude that

To prove the second property, we show that

Let and We will show that By the definition of logarithmic functions, we
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know that and From the previous equations, we see that

Therefore, Since exponential functions are one-to-one, we can conclude that

□

Example 1.38

Changing Bases

Use a calculating utility to evaluate with the change-of-base formula presented earlier.

Solution
Use the second equation with and

Use the change-of-base formula and a calculating utility to evaluate

Example 1.39

Chapter Opener: The Richter Scale for Earthquakes

Figure 1.48 (credit: modification of work by Robb
Hannawacker, NPS)

In 1935, Charles Richter developed a scale (now known as the Richter scale) to measure the magnitude of an
earthquake. The scale is a base-10 logarithmic scale, and it can be described as follows: Consider one earthquake
with magnitude on the Richter scale and a second earthquake with magnitude on the Richter scale.

Suppose which means the earthquake of magnitude is stronger, but how much stronger is it than

the other earthquake? A way of measuring the intensity of an earthquake is by using a seismograph to measure
the amplitude of the earthquake waves. If is the amplitude measured for the first earthquake and is the

amplitude measured for the second earthquake, then the amplitudes and magnitudes of the two earthquakes satisfy
the following equation:

Consider an earthquake that measures 8 on the Richter scale and an earthquake that measures 7 on the Richter
scale. Then,
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Therefore,

which implies or Since is 10 times the size of we say that the first

earthquake is 10 times as intense as the second earthquake. On the other hand, if one earthquake measures 8 on
the Richter scale and another measures 6, then the relative intensity of the two earthquakes satisfies the equation

Therefore, That is, the first earthquake is 100 times more intense than the second earthquake.

How can we use logarithmic functions to compare the relative severity of the magnitude 9 earthquake in Japan in
2011 with the magnitude 7.3 earthquake in Haiti in 2010?

Solution
To compare the Japan and Haiti earthquakes, we can use an equation presented earlier:

Therefore, and we conclude that the earthquake in Japan was approximately times more

intense than the earthquake in Haiti.

Compare the relative severity of a magnitude earthquake with a magnitude earthquake.

Hyperbolic Functions
The hyperbolic functions are defined in terms of certain combinations of and These functions arise naturally
in various engineering and physics applications, including the study of water waves and vibrations of elastic membranes.
Another common use for a hyperbolic function is the representation of a hanging chain or cable, also known as a catenary
(Figure 1.49). If we introduce a coordinate system so that the low point of the chain lies along the -axis, we can describe

the height of the chain in terms of a hyperbolic function. First, we define the hyperbolic functions.
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Figure 1.49 The shape of a strand of silk in a spider’s web
can be described in terms of a hyperbolic function. The same
shape applies to a chain or cable hanging from two supports with
only its own weight. (credit: “Mtpaley”, Wikimedia Commons)

Definition

Hyperbolic cosine

Hyperbolic sine

Hyperbolic tangent

Hyperbolic cosecant

Hyperbolic secant

Hyperbolic cotangent

The name cosh rhymes with “gosh,” whereas the name sinh is pronounced “cinch.” Tanh, sech, csch, and coth are
pronounced “tanch,” “seech,” “coseech,” and “cotanch,” respectively.

Using the definition of and principles of physics, it can be shown that the height of a hanging chain, such as the
one in Figure 1.49, can be described by the function for certain constants and

But why are these functions called hyperbolic functions? To answer this question, consider the quantity
Using the definition of and we see that
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This identity is the analog of the trigonometric identity Here, given a value the point

lies on the unit hyperbola (Figure 1.50).

Figure 1.50 The unit hyperbola

Graphs of Hyperbolic Functions

To graph and we make use of the fact that both functions approach as since

as As approaches whereas approaches Therefore, using the graphs

of and as guides, we graph and To graph we use the fact that
for all as and as The graphs of the

other three hyperbolic functions can be sketched using the graphs of and (Figure 1.51).
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Figure 1.51 The hyperbolic functions involve combinations of and

Identities Involving Hyperbolic Functions

The identity shown in Figure 1.50, is one of several identities involving the hyperbolic functions,
some of which are listed next. The first four properties follow easily from the definitions of hyperbolic sine and hyperbolic
cosine. Except for some differences in signs, most of these properties are analogous to identities for trigonometric functions.

Rule: Identities Involving Hyperbolic Functions

1.

2.

3.

4.
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1.34

5.

6.

7.

8.

9.

Example 1.40

Evaluating Hyperbolic Functions

a. Simplify

b. If find the values of the remaining five hyperbolic functions.

Solution
a. Using the definition of the function, we write

b. Using the identity we see that

Since for all we must have Then, using the definitions for the other
hyperbolic functions, we conclude that and

Simplify

Inverse Hyperbolic Functions
From the graphs of the hyperbolic functions, we see that all of them are one-to-one except and If we
restrict the domains of these two functions to the interval then all the hyperbolic functions are one-to-one, and we
can define the inverse hyperbolic functions. Since the hyperbolic functions themselves involve exponential functions, the
inverse hyperbolic functions involve logarithmic functions.

Definition

Inverse Hyperbolic Functions
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Let’s look at how to derive the first equation. The others follow similarly. Suppose Then, and,

by the definition of the hyperbolic sine function, Therefore,

Multiplying this equation by we obtain

This can be solved like a quadratic equation, with the solution

Since the only solution is the one with the positive sign. Applying the natural logarithm to both sides of the
equation, we conclude that

Example 1.41

Evaluating Inverse Hyperbolic Functions

Evaluate each of the following expressions.

Solution

Evaluate
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1.5 EXERCISES
For the following exercises, evaluate the given exponential
functions as indicated, accurate to two significant digits
after the decimal.

229. a. b. c.

230. a. b. c.

231. a. b. c.

232. a. b. c.

For the following exercises, match the exponential equation
to the correct graph.

a.

b.

c.

d.

e.

f.

233.

234.

235.
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236.

237.

238.

For the following exercises, sketch the graph of the
exponential function. Determine the domain, range, and
horizontal asymptote.

239.

240.

241.

242.

243.

244.

245.

For the following exercises, write the equation in
equivalent exponential form.

246.

247.

248.

249.

250.

251.

252.

253.

For the following exercises, write the equation in
equivalent logarithmic form.

254.

255.

256.

257.

258.
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259.

260.

261.

262.

263.

For the following exercises, sketch the graph of the
logarithmic function. Determine the domain, range, and
vertical asymptote.

264.

265.

266.

267.

268.

269.

For the following exercises, use properties of logarithms to
write the expressions as a sum, difference, and/or product
of logarithms.

270.

271.

272.

273.

274.

275.

For the following exercises, solve the exponential equation
exactly.

276.

277.

278.

279.

280.

281.

282.

283.

For the following exercises, solve the logarithmic equation
exactly, if possible.

284.

285.

286.

287.

288.

289.

290.

291.

For the following exercises, use the change-of-base
formula and either base 10 or base e to evaluate the given
expressions. Answer in exact form and in approximate
form, rounding to four decimal places.

292.

293.

294.

295.

296.

297.

298. Rewrite the following expressions in terms of
exponentials and simplify. a. b.

c. d.
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299. [T] The number of bacteria N in a culture after t days
can be modeled by the function Find
the number of bacteria present after 15 days.

300. [T] The demand D (in millions of barrels) for oil
in an oil-rich country is given by the function

where p is the price (in dollars)

of a barrel of oil. Find the amount of oil demanded (to the
nearest million barrels) when the price is between $15 and
$20.

301. [T] The amount A of a $100,000 investment paying
continuously and compounded for t years is given by

Find the amount A accumulated
in 5 years.

302. [T] An investment is compounded monthly,
quarterly, or yearly and is given by the function

where is the value of the investment

at time is the initial principle that was invested,

is the annual interest rate, and is the number of time
the interest is compounded per year. Given a yearly interest
rate of 3.5% and an initial principle of $100,000, find the
amount accumulated in 5 years for interest that is
compounded a. daily, b., monthly, c. quarterly, and d.
yearly.

303. [T] The concentration of hydrogen ions in a
substance is denoted by measured in moles per

liter. The pH of a substance is defined by the logarithmic
function This function is used to

measure the acidity of a substance. The pH of water is 7. A
substance with a pH less than 7 is an acid, whereas one that
has a pH of more than 7 is a base.

a. Find the pH of the following substances. Round
answers to one digit.

b. Determine whether the substance is an acid or a
base.

i. Eggs: mol/L

ii. Beer: mol/L

iii. Tomato Juice: mol/L

304. [T] Iodine-131 is a radioactive substance that decays
according to the function where

is the initial quantity of a sample of the substance and t

is in days. Determine how long it takes (to the nearest day)
for 95% of a quantity to decay.

305. [T] According to the World Bank, at the end of
2013 ( ) the U.S. population was 316 million and
was increasing according to the following model:

where P is measured in millions of
people and t is measured in years after 2013.

a. Based on this model, what will be the population of
the United States in 2020?

b. Determine when the U.S. population will be twice
what it is in 2013.

306. [T] The amount A accumulated after 1000 dollars is
invested for t years at an interest rate of 4% is modeled by
the function

a. Find the amount accumulated after 5 years and 10
years.

b. Determine how long it takes for the original
investment to triple.

307. [T] A bacterial colony grown in a lab is known to
double in number in 12 hours. Suppose, initially, there are
1000 bacteria present.

a. Use the exponential function to

determine the value which is the growth rate of
the bacteria. Round to four decimal places.

b. Determine approximately how long it takes for
200,000 bacteria to grow.

308. [T] The rabbit population on a game reserve doubles
every 6 months. Suppose there were 120 rabbits initially.

a. Use the exponential function to

determine the growth rate constant Round to
four decimal places.

b. Use the function in part a. to determine
approximately how long it takes for the rabbit
population to reach 3500.

309. [T] The 1906 earthquake in San Francisco had a
magnitude of 8.3 on the Richter scale. At the same time,
in Japan, an earthquake with magnitude 4.9 caused only
minor damage. Approximately how much more energy was
released by the San Francisco earthquake than by the
Japanese earthquake?
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absolute value function

algebraic function

base

composite function

cubic function

decreasing on the interval

degree

dependent variable

domain

even function

exponent

function

graph of a function

horizontal line test

hyperbolic functions

increasing on the interval

independent variable

inverse function

inverse hyperbolic functions

inverse trigonometric functions

linear function

logarithmic function

mathematical model

natural exponential function

CHAPTER 1 REVIEW

KEY TERMS

a function involving any combination of only the basic operations of addition, subtraction,
multiplication, division, powers, and roots applied to an input variable

the number in the exponential function and the logarithmic function

given two functions and a new function, denoted such that

a polynomial of degree 3; that is, a function of the form where

a function decreasing on the interval if, for all if

for a polynomial function, the value of the largest exponent of any term

the output variable for a function

the set of inputs for a function

a function is even if for all in the domain of

the value in the expression

a set of inputs, a set of outputs, and a rule for mapping each input to exactly one output

the set of points such that is in the domain of and

a function is one-to-one if and only if every horizontal line intersects the graph of at most,

once

the functions denoted and which involve certain

combinations of and

a function increasing on the interval if for all if

the input variable for a function

for a function the inverse function satisfies if

the inverses of the hyperbolic functions where and are restricted to the
domain each of these functions can be expressed in terms of a composition of the natural logarithm function
and an algebraic function

the inverses of the trigonometric functions are defined on restricted domains where
they are one-to-one functions

a function that can be written in the form

a function of the form for some base such that if

and only if

A method of simulating real-life situations with mathematical equations

the function
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natural logarithm

number e

odd function

one-to-one function

periodic function

piecewise-defined function

point-slope equation

polynomial function

power function

quadratic function

radians

range

rational function

restricted domain

root function

slope

slope-intercept form

symmetry about the origin

symmetry about the y-axis

table of values

transcendental function

transformation of a function

trigonometric functions

trigonometric identity

vertical line test

zeros of a function

the function

as gets larger, the quantity gets closer to some real number; we define that real number to be
the value of is approximately

a function is odd if for all in the domain of

a function is one-to-one if if

a function is periodic if it has a repeating pattern as the values of move from left to right

a function that is defined differently on different parts of its domain

equation of a linear function indicating its slope and a point on the graph of the function

a function of the form

a function of the form for any positive integer

a polynomial of degree 2; that is, a function of the form where

for a circular arc of length on a circle of radius 1, the radian measure of the associated angle is

the set of outputs for a function

a function of the form where and are polynomials

a subset of the domain of a function

a function of the form for any integer

the change in y for each unit change in x

equation of a linear function indicating its slope and y-intercept

the graph of a function is symmetric about the origin if is on the graph of

whenever is on the graph

the graph of a function is symmetric about the -axis if is on the graph of

whenever is on the graph

a table containing a list of inputs and their corresponding outputs

a function that cannot be expressed by a combination of basic arithmetic operations

a shift, scaling, or reflection of a function

functions of an angle defined as ratios of the lengths of the sides of a right triangle

an equation involving trigonometric functions that is true for all angles for which the
functions in the equation are defined

given the graph of a function, every vertical line intersects the graph, at most, once

when a real number is a zero of a function

KEY EQUATIONS
• Composition of two functions

• Absolute value function
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• Point-slope equation of a line

• Slope-intercept form of a line

• Standard form of a line

• Polynomial function

• Generalized sine function

• Inverse functions

KEY CONCEPTS
1.1 Review of Functions

• A function is a mapping from a set of inputs to a set of outputs with exactly one output for each input.

• If no domain is stated for a function the domain is considered to be the set of all real numbers for

which the function is defined.

• When sketching the graph of a function each vertical line may intersect the graph, at most, once.

• A function may have any number of zeros, but it has, at most, one y-intercept.

• To define the composition the range of must be contained in the domain of

• Even functions are symmetric about the -axis whereas odd functions are symmetric about the origin.

1.2 Basic Classes of Functions

• The power function is an even function if is even and and it is an odd function if is odd.

• The root function has the domain if is even and the domain if is odd. If

is odd, then is an odd function.

• The domain of the rational function where and are polynomial functions, is the set

of such that

• Functions that involve the basic operations of addition, subtraction, multiplication, division, and powers are
algebraic functions. All other functions are transcendental. Trigonometric, exponential, and logarithmic functions
are examples of transcendental functions.

• A polynomial function with degree satisfies as The sign of the output as

depends on the sign of the leading coefficient only and on whether is even or odd.

• Vertical and horizontal shifts, vertical and horizontal scalings, and reflections about the - and -axes are

examples of transformations of functions.

1.3 Trigonometric Functions

• Radian measure is defined such that the angle associated with the arc of length 1 on the unit circle has radian
measure 1. An angle with a degree measure of has a radian measure of rad.
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• For acute angles the values of the trigonometric functions are defined as ratios of two sides of a right triangle
in which one of the acute angles is

• For a general angle let be a point on a circle of radius corresponding to this angle The

trigonometric functions can be written as ratios involving and

• The trigonometric functions are periodic. The sine, cosine, secant, and cosecant functions have period The
tangent and cotangent functions have period

1.4 Inverse Functions

• For a function to have an inverse, the function must be one-to-one. Given the graph of a function, we can determine
whether the function is one-to-one by using the horizontal line test.

• If a function is not one-to-one, we can restrict the domain to a smaller domain where the function is one-to-one and
then define the inverse of the function on the smaller domain.

• For a function and its inverse for all in the domain of and for all

in the domain of

• Since the trigonometric functions are periodic, we need to restrict their domains to define the inverse trigonometric
functions.

• The graph of a function and its inverse are symmetric about the line

1.5 Exponential and Logarithmic Functions

• The exponential function is increasing if and decreasing if Its domain is

and its range is

• The logarithmic function is the inverse of Its domain is and its range is

• The natural exponential function is and the natural logarithmic function is

• Given an exponential function or logarithmic function in base we can make a change of base to convert this
function to any base We typically convert to base

• The hyperbolic functions involve combinations of the exponential functions and As a result, the inverse
hyperbolic functions involve the natural logarithm.

CHAPTER 1 REVIEW EXERCISES
True or False? Justify your answer with a proof or a
counterexample.

310. A function is always one-to-one.

311. assuming f and g are functions.

312. A relation that passes the horizontal and vertical line
tests is a one-to-one function.

313. A relation passing the horizontal line test is a
function.

For the following problems, state the domain and range of
the given functions:

314. h

315. g

316.

317.

Find the degree, y-intercept, and zeros for the following
polynomial functions.

318.
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319.

Simplify the following trigonometric expressions.

320.

321.

Solve the following trigonometric equations on the interval
exactly.

322.

323.

Solve the following logarithmic equations.

324.

325.

Are the following functions one-to-one over their domain
of existence? Does the function have an inverse? If so, find
the inverse of the function. Justify your answer.

326.

327.

For the following problems, determine the largest domain
on which the function is one-to-one and find the inverse on
that domain.

328.

329.

330. A car is racing along a circular track with diameter of
1 mi. A trainer standing in the center of the circle marks his
progress every 5 sec. After 5 sec, the trainer has to turn 55°
to keep up with the car. How fast is the car traveling?

For the following problems, consider a restaurant owner
who wants to sell T-shirts advertising his brand. He recalls
that there is a fixed cost and variable cost, although he does
not remember the values. He does know that the T-shirt
printing company charges $440 for 20 shirts and $1000 for
100 shirts.

331. a. Find the equation that describes the

total cost as a function of number of shirts and b. determine
how many shirts he must sell to break even if he sells the
shirts for $10 each.

332. a. Find the inverse function and

describe the meaning of this function. b. Determine how
many shirts the owner can buy if he has $8000 to spend.

For the following problems, consider the population of
Ocean City, New Jersey, which is cyclical by season.

333. The population can be modeled by
where is time in

months represents January 1) and is population
(in thousands). During a year, in what intervals is the
population less than 20,000? During what intervals is the
population more than 140,000?

334. In reality, the overall population is most likely
increasing or decreasing throughout each year. Let’s
reformulate the model as

where is time in
months ( represents January 1) and is population
(in thousands). When is the first time the population
reaches 200,000?

For the following problems, consider radioactive dating. A
human skeleton is found in an archeological dig. Carbon
dating is implemented to determine how old the skeleton is
by using the equation where is the percentage

of radiocarbon still present in the material, is the number
of years passed, and is the decay rate of
radiocarbon.

335. If the skeleton is expected to be 2000 years old, what
percentage of radiocarbon should be present?

336. Find the inverse of the carbon-dating equation. What
does it mean? If there is 25% radiocarbon, how old is the
skeleton?

Chapter 1 | Functions and Graphs 121


